Bouncing ball with a finite restitution: Chattering, locking, and chaos.

作者: J. M. Luck , Anita Mehta

DOI: 10.1103/PHYSREVE.48.3988

关键词: Function (mathematics)Divergence (computer science)Coefficient of restitutionRestitutionMathematicsBouncing ball dynamicsDevelopment (differential geometry)Classical mechanicsCHAOS (operating system)

摘要: We study the dynamic evolution of a bouncing ball on vibrating platform, such as membrane loudspeaker, function its coefficient restitution \ensuremath{\alpha} and demonstrate primarily that presence chaos in this system is by no means inevitable development obvious. Indeed, we show generic trajectories starting under experimental conditions terminate region ``chattering'' (where memory earlier dynamics lost), before repeating themselves periodic way. As consequence, except possibly for strictly elastic case (\ensuremath{\alpha}=1), to via period-doubling route will not be observed. Our arguments are corroborated numerical studies, concerning especially divergence mean period limit approached (\ensuremath{\alpha}\ensuremath{\rightarrow}1).

参考文章(24)
ENRICO Fermi, On the Origin of the Cosmic Radiation Physical Review. ,vol. 75, pp. 1169- 1174 ,(1949) , 10.1103/PHYSREV.75.1169
G.M. Zaslavsky, The simplest case of a strange attractor Physics Letters A. ,vol. 69, pp. 145- 147 ,(1978) , 10.1016/0375-9601(78)90195-0
Boris V Chirikov, A universal instability of many-dimensional oscillator systems Physics Reports. ,vol. 52, pp. 263- 379 ,(1979) , 10.1016/0370-1573(79)90023-1
A.J. Lichtenberg, M.A. Lieberman, R.H. Cohen, Fermi acceleration revisited Physica D: Nonlinear Phenomena. ,vol. 1, pp. 291- 305 ,(1980) , 10.1016/0167-2789(80)90027-5
P.J. Holmes, The dynamics of repeated impacts with a sinusoidally vibrating table Journal of Sound and Vibration. ,vol. 84, pp. 173- 189 ,(1982) , 10.1016/S0022-460X(82)80002-3
Pi. Pierański, Z. Kowalik, M. Franaszek, Jumping particle model. A study of the phase space of a non-linear dynamical system below its transition to chaos Journal de Physique. ,vol. 46, pp. 681- 686 ,(1985) , 10.1051/JPHYS:01985004605068100
Pi. Pierański, R. Bartolino, Jumping particle model. Modulation modes and resonant response to a periodic perturbation Journal de Physique. ,vol. 46, pp. 687- 690 ,(1985) , 10.1051/JPHYS:01985004605068700
Piotr Pierański, Direct evidence for the suppression of period doubling in the bouncing-ball model. Physical Review A. ,vol. 37, pp. 1782- 1785 ,(1988) , 10.1103/PHYSREVA.37.1782
Zbigniew J. Kowalik, Marek Franaszek, Piotr Pierański, Self-reanimating chaos in the bouncing-ball system Physical Review A. ,vol. 37, pp. 4016- 4022 ,(1988) , 10.1103/PHYSREVA.37.4016