In vitro and in vivo studies on the disposition of mirtazapine in humans

作者: M.-L. Dahl , G. Voortman , C. Alm , C.-E. Elwin , L. Delbressine

DOI: 10.2165/00044011-199713010-00005

关键词: Drug metabolismMirtazapineCYP1A2MetaboliteMedicineInternal medicineCYP2D6DebrisoquineBufuralolEndocrinologyPharmacologyEnantiomer

摘要: The novel antidepressant mirtazapine is a racemate with both noradrenergic and serotonergic potentiating effects. In vitro metabolism of racemic was studied in (a) microsomes from cells expressing different cytochrome P450 (CYP) enzymes (b) human liver 10 subjects compared the rate 4 substrates specific CYP enzymes: ethoxyresorufin (CYP1A2), diclofenac (CYP2C9), bufuralol (CYP2D6) testosterone (CYP3A4). These experiments suggested that 8-hydroxylation catalysed by CYP2D6, N(2)-demethylation N(2)-oxidation are CYP3A4. Mirtazapine shown to be competitive inhibitor CYP2D6 mediated hydroxylation vitro, but times higher inhibition constant (Ki) than for fluoxetine, i.e. much weaker inhibitor. To investigate importance vivo disposition mirtazapine, single oral dose given 7 extensive (EM) poor metabolisers (PM) debrisoquine. Plasma concentrations (sum enantiomers) its demethyl metabolite were monitored over 3 days. Oral plasma clearance very similar EM PM debrisoquine (0.51 ±0.18 0.49 ± 0.22 L/h/kg, respectively; NS). addition, mean half-lives almost identical: 23.4 23.3 hours, respectively. demethylmirtazapine also PM. This study indicates major enantiomer not metabolised it cannot excluded minor one is. A using chiral analysis 2 enantiomers currently ongoing. From clinical point view unlikely would inhibit coadministered drugs CYP1A2, or panel on shows strong inhibitors expected affect concentration enantiomer, effect predicted.

参考文章(16)
Leif Bertilsson, Ya-Qing Lou, Yun-Long Du, Yin Liu, Tang-Yun Kuang, Xia-Mau Liao, Ke-Yi Wang, Jesús Reviriego, Lennart Iselius, Folke Sjöqvist, Pronounced differences between native Chinese and Swedish populations in the polymorphic hydroxylations of debrisoquin and S-mephenytoin Clinical Pharmacology and Therapeutics. ,vol. 51, pp. 388- 397 ,(1992) , 10.1038/CLPT.1992.38
G. W. Sandker, R. M. E. Vos, L. P. C. Delbressine, M. J. H. Slooff, D. K. F. Meijer, G. M. M. Groothuis, Metabolism of three pharmacologically active drugs in isolated human and rat hepatocytes: Analysis of interspecies variability and comparison with metabolism in vivo Xenobiotica. ,vol. 24, pp. 143- 155 ,(1994) , 10.3109/00498259409043228
Th. De Boer, G. S. F. Ruigt, H. H. G. Berendsen, The α2-selective adrenoceptor antagonist org 3770 (mirtazapine, Remeron®) enhances noradrenergic and serotonergic transmission Human Psychopharmacology-clinical and Experimental. ,vol. 10, ,(1995) , 10.1002/HUP.470100805
Frans M. Kaspersen, Fons A. M. Van Rooij, Eric G. M. Sperling, Joop H. Wieringa, The synthesis of org 3770 labelled with 3H, 13C AND 14C Journal of Labelled Compounds and Radiopharmaceuticals. ,vol. 27, pp. 1055- 1068 ,(1989) , 10.1002/JLCR.2580270911
C. von Bahr, E. Spina, C. Birgersson, Ö. Ericsson, M. Göransson, T. Henthorn, F. Sjöqvist, Inhibition of desmethylimipramine 2-hydroxylation by drugs in human liver microsomes. Biochemical Pharmacology. ,vol. 34, pp. 2501- 2505 ,(1985) , 10.1016/0006-2952(85)90533-7
C. J. Timmer, A. A. M. Lohmann, C. P. A. Mink, Pharmacokinetic dose-proportionality study at steady state of mirtazapine from Remeron® tablets Human Psychopharmacology-clinical and Experimental. ,vol. 10, ,(1995) , 10.1002/HUP.470100804
Rick Davis, Michelle I. Wilde, Mirtazapine CNS Drugs. ,vol. 5, pp. 389- 402 ,(1996) , 10.2165/00023210-199605050-00007