Efficient KPCA-Based Feature Extraction: A Novel Algorithm and Experiments

作者: Yong Xu , David Zhang , Jing-Yu Yang , Zhong Jing , Miao Li

DOI: 10.1007/978-3-540-37258-5_23

关键词: SpeedupPattern recognition (psychology)Feature extractionBenchmark (computing)AlgorithmKernel principal component analysisSet (abstract data type)Artificial intelligenceEngineeringPattern recognitionFeature vectorPrincipal component analysis

摘要: KPCA has been widely used for feature extraction. It is noticeable that the efficiency of KPCA-based extraction in inverse proportion to size training sample set. In order speed up extraction, we develop a novel algorithm(i.e. IKPCA) which improves with distinctive viewpoint. The algorithm methodologically consistent clear physical meaning. Experiments on several benchmark datasets illustrate IKPCA-based much faster than ratio time may be smaller 0.30. Furthermore, classification accuracy corresponding IKPCA comparable KPCA.

参考文章(14)
Zhong Jin, Franck Davoine, Zhen Lou, Jingyu Yang, A novel PCA-based bayes classifier and face analysis international conference on biometrics. pp. 144- 150 ,(2006) , 10.1007/11608288_20
Bernhard Schölkopf, Alexander Smola, Klaus-Robert Müller, Kernel Principal Component Analysis international conference on artificial neural networks. pp. 583- 588 ,(1997) , 10.1007/BFB0020217
Keinosuke Fukunaga, Introduction to statistical pattern recognition (2nd ed.) Academic Press Professional, Inc.. ,(1990)
Jian Yang, Jing-yu Yang, Why can LDA be performed in PCA transformed space Pattern Recognition. ,vol. 36, pp. 563- 566 ,(2003) , 10.1016/S0031-3203(02)00048-1
Yong Xu, Jing-yu Yang, Jianfeng Lu, Dong-jun Yu, An efficient renovation on kernel Fisher discriminant analysis and face recognition experiments Pattern Recognition. ,vol. 37, pp. 2091- 2094 ,(2004) , 10.1016/J.PATCOG.2004.02.016
Yong Xu, Jing-yu Yang, Jian Yang, A reformative kernel Fisher discriminant analysis Pattern Recognition. ,vol. 37, pp. 1299- 1302 ,(2004) , 10.1016/J.PATCOG.2003.10.006
M.A. Turk, A.P. Pentland, Face recognition using eigenfaces computer vision and pattern recognition. pp. 586- 591 ,(1991) , 10.1109/CVPR.1991.139758
M. Kirby, L. Sirovich, Application of the Karhunen-Loeve procedure for the characterization of human faces IEEE Transactions on Pattern Analysis and Machine Intelligence. ,vol. 12, pp. 103- 108 ,(1990) , 10.1109/34.41390
Bernhard Schölkopf, Alexander Smola, Klaus-Robert Müller, Nonlinear component analysis as a kernel eigenvalue problem Neural Computation. ,vol. 10, pp. 1299- 1319 ,(1998) , 10.1162/089976698300017467