作者: Yanhong Lin , Xiaolin Li , Shiguo Huang , Jing Wang , Yuanzi Zhang
DOI: 10.3390/A14040120
关键词: Feature selection 、 Pattern recognition 、 Artificial bee colony algorithm 、 Continuous optimization 、 Crossover 、 Interpretability 、 Feature (machine learning) 、 Multicollinearity 、 Artificial intelligence 、 Computer science 、 Quantitative structure–activity relationship
摘要: Quantitative Structure–Activity Relationship (QSAR) aims to correlate molecular structure properties with corresponding bioactivity. Chance correlations and multicollinearity are two …