Nonmetric individual differences multidimensional scaling: An alternating least squares method with optimal scaling features.

作者: Yoshio Takane , Forrest W. Young , Jan de Leeuw

DOI: 10.1007/BF02293745

关键词: Multidimensional scalingStatisticsOptimal scalingLevel of measurementNonmetric multidimensional scalingAlternating least squaresSimple (abstract algebra)Statistical analysisInterval (mathematics)Applied mathematicsMathematics

摘要: … This means that if we define a column vector d containing the … when the data are defined at the interval measurement level. … are independent of those for the others, we can impose a non…

参考文章(47)
Louis Guttman, James C. Lingoes, The Guttman-Lingoes nonmetric program series Mathesis Press. ,(1973)
Paul E. Green, Vithala R. Rao, Applied multidimensional scaling : a comparison of approaches and algorithms Holt, Rinehart and Winston. ,(1972)
Sir Ronald Aylmer Fisher, Statistical Methods for Research Workers ,(1925)
Maxime Bôcher, Introduction to higher algebra ,(1907)
Ledyard R Tucker, Some mathematical notes on three-mode factor analysis Psychometrika. ,vol. 31, pp. 279- 311 ,(1966) , 10.1007/BF02289464
George A. Miller, Patricia E. Nicely, An Analysis of Perceptual Confusions Among Some English Consonants The Journal of the Acoustical Society of America. ,vol. 27, pp. 338- 352 ,(1955) , 10.1121/1.1907526
Stanley Smith Stevens, Handbook of experimental psychology ,(1951)
J. B. Kruskal, Nonmetric multidimensional scaling: A numerical method Psychometrika. ,vol. 29, pp. 115- 129 ,(1964) , 10.1007/BF02289694