Grassmann Integral Topological Invariants

作者: C. Klimcik

DOI:

关键词: Symmetry protected topological orderTopological algebraTopological quantum numberPhysicsTopological entropy in physicsGrassmann numberPure mathematicsHomeomorphismTopological ringGrassmann integral

摘要: Partition functions of some two-dimensional statistical models can be represented by means Grassmann integrals over loops living on torus. It is shown that those are topological invariants, which depend only the winding numbers loops. The fact makes possible to evaluate partition and mean values certain characteristics (indices) configurations, behave as (topological) order parameters.

参考文章(5)
R. Rajaraman, Solitons and instantons ,(1982)
David Mitchell, Neil Turok, Statistical mechanics of cosmic strings Physical Review Letters. ,vol. 58, pp. 1577- 1580 ,(1987) , 10.1103/PHYSREVLETT.58.1577
Robert Brandenberger, Cumrun Vafa, None, Superstrings in the Early Universe Nuclear Physics. ,vol. 316, pp. 391- 410 ,(1989) , 10.1016/0550-3213(89)90037-0
C Klimčík, None, Thermal strings on the lattice and the winding number transition Physics Letters B. ,vol. 263, pp. 469- 475 ,(1991) , 10.1016/0370-2693(91)90490-H