An introduction to propensity-score methods for reducing confounding in observational studies

作者: Peter C Austin

DOI:

关键词: Observational studyPropensity score matchingEconometricsConfoundingDemographyMedicine

摘要:

参考文章(80)
Paul R. Rosenbaum, A Characterization of Optimal Designs for Observational Studies Journal of the royal statistical society series b-methodological. ,vol. 53, pp. 597- 610 ,(1991) , 10.1111/J.2517-6161.1991.TB01848.X
W. G. Cochran, S. Paul Chambers, The Planning of Observational Studies of Human Populations Journal of the Royal Statistical Society: Series A (General). ,vol. 128, pp. 234- 255 ,(1965) , 10.2307/2344179
Adam E. Wyse, Venessa Keesler, Barbara Schneider, Assessing the effects of small school size on mathematics achievement: A propensity score-matching approach Teachers College Record. ,vol. 110, pp. 1879- 1900 ,(2008)
P. R. Rosenbaum, D. B. Rubin, Assessing Sensitivity to an Unobserved Binary Covariate in an Observational Study with Binary Outcome Journal of the royal statistical society series b-methodological. ,vol. 45, pp. 212- 218 ,(1983) , 10.1111/J.2517-6161.1983.TB01242.X
Paul R. Rosenbaum, Design of Observational Studies ,(2010)
Peter C Austin, A report card on propensity-score matching in the cardiology literature from 2004 to 2006: results of a systematic review Circulation-cardiovascular Quality and Outcomes. ,vol. 1, ,(2008)
Robert Obenchain, Douglas Faries, Josep Haro, Andrew Leon, Analysis of Observational Health Care Data Using SAS ,(2010)
Donald B. Rubin, Matched Sampling for Causal Effects ,(2006)
William G. Cochran, Donald B. Rubin, Controlling Bias in Observational Studies: A Review Matched Sampling for Causal Effects. pp. 30- 58 ,(1974) , 10.1017/CBO9780511810725.005