Noisy quantum Parrondo games

作者: David A. Meyer

DOI: 10.1117/12.497095

关键词: QuantumQuantum decoherenceStatistical physicsCoin flippingPhysicsContinuum (measurement)Fair coinQuantum walkRatchet

摘要: Alternating two fair coin flipping games can create a winning game. Such Parrondo game is discrete model for thermal ratchet. Recently we have constructed quantum versions of these that display the same 'paradoxical' behavior. In this paper add noise to in order they be compared with continuum models ratchets. Simulation reproduces one most interesting features ratchets: current inversion.

参考文章(15)
Charles E. M. Pearce, On Parrondo’s paradoxical games UNSOLVED PROBLEMS OF NOISE AND FLUCTUATIONS: UPoN'99: Second International Conference. ,vol. 511, pp. 201- 206 ,(2000) , 10.1063/1.59975
David A. Meyer, Heather Blumer, PARRONDO GAMES AS LATTICE GAS AUTOMATA Journal of Statistical Physics. ,vol. 107, pp. 225- 239 ,(2002) , 10.1023/A:1014566822448
Isaac L. Chuang, Michael A. Nielsen, Quantum Computation and Quantum Information ,(2000)
Daniel Gottesman, Alexei Kitaev, John Preskill, Encoding a qubit in an oscillator Physical Review A. ,vol. 64, pp. 012310- ,(2001) , 10.1103/PHYSREVA.64.012310
DAVID A. MEYER, HEATHER BLUMER, QUANTUM PARRONDO GAMES: BIASED AND UNBIASED Fluctuation and Noise Letters. ,vol. 02, ,(2002) , 10.1142/S021947750200083X
A.O Caldeira, A.J Leggett, Quantum tunnelling in a dissipative system Annals of Physics. ,vol. 149, pp. 374- 456 ,(1983) , 10.1016/0003-4916(83)90202-6
Todd A. Brun, Hilary A. Carteret, Andris Ambainis, Quantum to classical transition for random walks Physical Review Letters. ,vol. 91, pp. 130602- 130602 ,(2003) , 10.1103/PHYSREVLETT.91.130602
David A. Meyer, From quantum cellular automata to quantum lattice gases Journal of Statistical Physics. ,vol. 85, pp. 551- 574 ,(1996) , 10.1007/BF02199356
D. Abbott, G. P. Harmer, Parrondo's paradox Statistical Science. ,vol. 14, pp. 206- 213 ,(1999) , 10.1214/SS/1009212247