Theory and Methods Related to the Singular-Function Expansion and Landweber's Iteration for Integral Equations of the First Kind

作者: Otto Neall Strand

DOI: 10.1137/0711066

关键词: MathematicsPure mathematicsConvergence (routing)Function (mathematics)Integral equationFredholm integral equationMatrix (mathematics)Linear mapDiscrete mathematicsUniqueness theorem for Poisson's equationSingular function

摘要: For the Fredholm integral equation of first kind, written notationally as $Kf = g$, $g \in L_2 [0,1]$, we study behavior iteration \[ \hat f_k f_{k - 1} + DK^ * (g K\hat ),\quad k 1,2, \cdots ,\] both with respect to its convergence properties and response singular functions K. Here $K^ $ is adjoint K, $\hat f_0 a suitable starting function D fixed linear operator be chosen. The general theory interpreted extended for iteration, quantitative method choosing shape K derived. Several specific matrix integral-equation examples are presented.

参考文章(16)
O. N. Strand, E. Rd Westwater, Minimum-RMS Estimation of the Numerical Solution of a Fredholm Integral Equation of the First Kind SIAM Journal on Numerical Analysis. ,vol. 5, pp. 287- 295 ,(1968) , 10.1137/0705025
Carlton L. Mateer, On the Information Content of Umkehr Observations. Journal of the Atmospheric Sciences. ,vol. 22, pp. 370- 381 ,(1965) , 10.1175/1520-0469(1965)022<0370:OTICOU>2.0.CO;2
L. Landweber, An iteration formula for Fredholm integral equations of the first kind American Journal of Mathematics. ,vol. 73, pp. 615- 624 ,(1951) , 10.2307/2372313
A Tikhonov, Solution of incorrectly formulated problems and the regularization method Soviet Math. Dokl.. ,vol. 5, pp. 1035- 1038 ,(1963)