A variational boundary element formulation for piezoelectricity

作者: Pin Lu , O. Mahrenholtz

DOI: 10.1016/0093-6413(94)90024-8

关键词: PiezoelectricityBoundary element methodBoundary element formulationClassical mechanicsCalculus of variationsMathematicsNumerical analysis

摘要:

参考文章(10)
Tungyang Chen, Fang-Zi Lin, Numerical evaluation of derivatives of the anisotropic piezoelectric Green's functions Mechanics Research Communications. ,vol. 20, pp. 501- 506 ,(1993) , 10.1016/0093-6413(93)90010-L
G Davi, None, A hybrid displacement variational formulation of BEM for elastostatics Engineering Analysis with Boundary Elements. ,vol. 10, pp. 219- 224 ,(1992) , 10.1016/0955-7997(92)90005-R
T.G.B. DeFigueiredo, C.A. Brebbia, A new variational boundary element model for potential problems Engineering Analysis with Boundary Elements. ,vol. 8, pp. 45- 50 ,(1991) , 10.1016/0955-7997(91)90035-R
Horacio Sosa, Marco Castro, Electroelastic Analysis of Piezoelectric Laminated Structures Applied Mechanics Reviews. ,vol. 46, pp. S21- S28 ,(1993) , 10.1115/1.3122639
J.S. Lee, L.Z. Jiang, A boundary integral formulation and 2D fundamental solution for piezoelastic media Mechanics Research Communications. ,vol. 21, pp. 47- 54 ,(1994) , 10.1016/0093-6413(94)90008-6
Pin Lu, O. Mahrenholtz, A modified hybrid displacement variational formulation of BEM for elasticity Mechanics Research Communications. ,vol. 20, pp. 425- 429 ,(1993) , 10.1016/0093-6413(93)90034-L
Y. Sun, Y. Kagawa, T. Murai, A variational approach to boundary elements—two‐dimensional Laplace problem International Journal of Numerical Modelling-electronic Networks Devices and Fields. ,vol. 7, pp. 1- 14 ,(1994) , 10.1002/JNM.1660070102
Takurō Ikeda, Fundamentals of piezoelectricity ,(1990)