Varicella-Zoster Virus ORF9 Is an Antagonist of the DNA Sensor cGAS

作者: Jonny Hertzog , Rachel E. Rigby , Sonja Roll , Chiara Cursi , Lise Chauveau

DOI: 10.1101/2020.02.11.943415

关键词: Varicella zoster virusImmune systemBiologyVirologyInnate immune systemStingDNAVirusInterferonTransfection

摘要: ABSTRACT Varicella-Zoster virus (VZV) causes chickenpox and shingles. Although infection is associated with severe morbidity in some individuals, the molecular mechanisms that determine innate immune responses remain poorly defined. We found cGAS/STING DNA sensing pathway was critically required for type I interferon (IFN) induction response to VZV infection. Viral gene overexpression screening identified essential tegument protein ORF9 as a novel antagonist of via cGAS. Ectopically well virally expressed bound endogenous Confocal microscopy revealed co-localisation cGAS ORF9, which blocked IFN transfected DNA. also interacted directly cell-free system. Our data further suggest inhibited production cGAMP by Taken together, our work highlights importance recognition an encoded interferes

参考文章(90)
L. Riva, M. Thiry, S. Bontems, A. Joris, J. Piette, M. Lebrun, C. Sadzot-Delvaux, ORF9p Phosphorylation by ORF47p Is Crucial for the Formation and Egress of Varicella-Zoster Virus Viral Particles Journal of Virology. ,vol. 87, pp. 2868- 2881 ,(2013) , 10.1128/JVI.02757-12
Philip J Kranzusch, Stephen C Wilson, Amy SY Lee, James M Berger, Jennifer A Doudna, Russell E Vance, None, Ancient Origin of cGAS-STING Reveals Mechanism of Universal 2',3' cGAMP Signaling. Molecular Cell. ,vol. 59, pp. 891- 903 ,(2015) , 10.1016/J.MOLCEL.2015.07.022
Kelly Hew, Sue-Li Dahlroth, Lucy Xin Pan, Tobias Cornvik, Pär Nordlund, VP22 core domain from Herpes simplex virus 1 reveals a surprising structural conservation in both the Alpha- and Gammaherpesvirinae subfamilies. Journal of General Virology. ,vol. 96, pp. 1436- 1445 ,(2015) , 10.1099/VIR.0.000078
Andrew J Davison, Evolution of the herpesviruses Veterinary Microbiology. ,vol. 86, pp. 69- 88 ,(2002) , 10.1016/S0378-1135(01)00492-8
Chengjun Mo, Jay Lee, Marvin H. Sommer, Ann M. Arvin, Varicella-zoster virus infection facilitates VZV glycoprotein E trafficking to the membrane surface of melanoma cells. Journal of Medical Virology. ,vol. 70, pp. 56- 58 ,(2003) , 10.1002/JMV.10322
Laura Riva, Marc Thiry, Marielle Lebrun, Laurent L'homme, Jacques Piette, Catherine Sadzot-Delvaux, Deletion of the ORF9p Acidic Cluster Impairs the Nuclear Egress of Varicella-Zoster Virus Capsids Journal of Virology. ,vol. 89, pp. 2436- 2441 ,(2015) , 10.1128/JVI.03215-14
Claudia Mainka, Bernhard Fuß, Hartmut Geiger, Heike Höfelmayr, Manfred H. Wolff, Characterization of viremia at different stages of varicella-zoster virus infection Journal of Medical Virology. ,vol. 56, pp. 91- 98 ,(1998) , 10.1002/(SICI)1096-9071(199809)56:1<91::AID-JMV15>3.0.CO;2-Z
J. I. Cohen, K. E. Seidel, Generation of varicella-zoster virus (VZV) and viral mutants from cosmid DNAs: VZV thymidylate synthetase is not essential for replication in vitro Proceedings of the National Academy of Sciences of the United States of America. ,vol. 90, pp. 7376- 7380 ,(1993) , 10.1073/PNAS.90.15.7376
Jan Rehwinkel, Choon Ping Tan, Delphine Goubau, Oliver Schulz, Andreas Pichlmair, Katja Bier, Nicole Robb, Frank Vreede, Wendy Barclay, Ervin Fodor, Caetano Reis e Sousa, RIG-I detects viral genomic RNA during negative-strand RNA virus infection. Cell. ,vol. 140, pp. 397- 408 ,(2010) , 10.1016/J.CELL.2010.01.020
A. M. Arvin, C. M. Koropchak, B. R. G. Williams, F. C. Grumet, S. K. H. Foung, Early immune response in healthy and immunocompromised subjects with primary varicella-zoster virus infection The Journal of Infectious Diseases. ,vol. 154, pp. 422- 429 ,(1986) , 10.1093/INFDIS/154.3.422