Global attractivity in monotone and subhomogeneous almost periodic systems

作者: Xiao-Qiang Zhao

DOI: 10.1016/S0022-0396(02)00054-2

关键词: MathematicsMonotone polygonClass (set theory)Mathematical analysisDelay differential equationApplied mathematicsDifferential systems

摘要: Abstract A global attractivity theorem is first proved for a class of skew-product semiflows. Then this result applied to monotone and subhomogeneous almost periodic reaction–diffusion equations, ordinary differential systems delay equations their dynamics.

参考文章(31)
Vincenzo Capasso, V Capasso, Mathematical structures of epidemic systems ,(1993)
Horst R. Thieme, Uniform weak implies uniform strong persistence for non-autonomous semiflows Proceedings of the American Mathematical Society. ,vol. 127, pp. 2395- 2403 ,(1999) , 10.1090/S0002-9939-99-05034-0
E. N. Dancer, P. Hess, Stability of fixed points for order-preserving discrete-time dynamical systems Crelle's Journal. ,vol. 419, pp. 125- 139 ,(1991)
Morris W. Hirsch, Hal L. Smith, Xiao-Qiang Zhao, Chain Transitivity, Attractivity, and Strong Repellors for Semidynamical Systems Journal of Dynamics and Differential Equations. ,vol. 13, pp. 107- 131 ,(2001) , 10.1023/A:1009044515567
Wenxian Shen, Yingfei Yi, Convergence in almost periodic Fisher and Kolmogorov models Journal of Mathematical Biology. ,vol. 37, pp. 84- 102 ,(1998) , 10.1007/S002850050121
S.R Dunbar, K.P Rybakowski, K Schmitt, Persistence in models of predator-prey populations with diffusion Journal of Differential Equations. ,vol. 65, pp. 117- 138 ,(1986) , 10.1016/0022-0396(86)90044-6