Separating families and order dimension of Turing degrees

作者: Ashutosh Kumar , Dilip Raghavan

DOI: 10.1016/J.APAL.2020.102911

关键词: Continuum (topology)TuringOrder dimensionMathematicsCountable setPure mathematics

摘要: Abstract We study families of functions and linear orders which separate countable subsets the continuum from points. As an application, we show that order dimension Turing degrees, denoted dim T , cannot be decided in ZFC. also provide a combinatorial description degrees have largest among all locally partial size continuum. Finally, prove it is consistent number needed to points strictly smaller than necessary for separating them.

参考文章(13)
Henry Kierstead, E. C. Milner, The dimension of the finite subsets κ Order. ,vol. 13, pp. 227- 231 ,(1996) , 10.1007/BF00338742
K. Kunen, Weak P-Points in N* Birkhäuser Basel. pp. 100- 108 ,(1993) , 10.1007/978-3-0348-7524-0_10
Stevo Todorčevič, Reals and Positive Partition Relations Studies in Logic and the Foundations of Mathematics. ,vol. 114, pp. 159- 169 ,(1986) , 10.1016/S0049-237X(09)70691-3
Stevo Todorcevic, Partition relations for partially ordered sets Acta Mathematica. ,vol. 155, pp. 1- 25 ,(1985) , 10.1007/BF02392535
Marcia J. Groszek, Theodore A. Slaman, Independence results on the global structure of the Turing degrees Transactions of the American Mathematical Society. ,vol. 277, pp. 579- 588 ,(1983) , 10.1090/S0002-9947-1983-0694377-4
James E. Baumgartner, Almost disjoint sets, the dense set problem and the partition calculus Annals of Mathematical Logic. ,vol. 9, pp. 401- 439 ,(1976) , 10.1016/0003-4843(76)90018-8
T. G. McLaughlin, Gerald E. Sacks, Degrees of Unsolvability. The American Mathematical Monthly. ,vol. 72, pp. 804- ,(1965) , 10.2307/2314466
Paul Erdös, Richard Rado, A Combinatorial Theorem Journal of the London Mathematical Society. ,vol. s1-25, pp. 249- 255 ,(1950) , 10.1112/JLMS/S1-25.4.249