A geometric discretization and a simple implementation for variational mesh generation and adaptation

作者: Weizhang Huang , Lennard Kamenski

DOI: 10.1016/J.JCP.2015.08.032

关键词: Mathematical optimizationMathematicsPolygon meshMesh generationAffine transformationLaplacian smoothingDiscretizationSmoothingApplied mathematicsJacobian matrix and determinantSimple (abstract algebra)

摘要: We present a simple direct discretization for functionals used in the variational mesh generation and adaptation. Meshing are discretized on simplicial meshes Jacobian matrix of continuous coordinate transformation is approximated by matrices affine mappings between elements. The advantage this geometric that it preserves basic structure functional, which useful preventing strong decoupling or loss integral constraints satisfied functional. Moreover, functional function coordinates vertices its derivatives have analytical form, allows implementation adaptation computer. Since base number adaptive moving smoothing methods, result work can be to develop implementations those methods. Numerical examples given.

参考文章(25)
Weizhang Huang, Robert D. Russell, Adaptive Moving Mesh Methods ,(2011)
A.M. Winslow, Adaptive-mesh zoning by the equipotential method Lawrence Livermore National Laboratory. ,(1981) , 10.2172/6227449
C. Wayne Mastin, Joe F. Thompson, Z. U.A. Warsi, Numerical Grid Generation: Foundations and Applications ,(1985)
Weizhang Huang, Yuhe Ren, Robert D. Russell, Moving Mesh Methods Based on Moving Mesh Partial Differential Equations Journal of Computational Physics. ,vol. 113, pp. 279- 290 ,(1994) , 10.1006/JCPH.1994.1135
Ruo Li, Tao Tang, Pingwen Zhang, Moving mesh methods in multiple dimensions based on harmonic maps Journal of Computational Physics. ,vol. 170, pp. 562- 588 ,(2001) , 10.1006/JCPH.2001.6749
G. Beckett, J.A. Mackenzie, M.L. Robertson, A moving mesh finite element method for the two-dimensional Stefan problems Journal of Computational Physics. ,vol. 168, pp. 500- 518 ,(2001) , 10.1006/JCPH.2001.6721
Patrick M. Knupp, Jacobian-Weighted Elliptic Grid Generation SIAM Journal on Scientific Computing. ,vol. 17, pp. 1475- 1490 ,(1996) , 10.1137/S1064827594278563
P. Knupp, R. Luczak, Truncation error in grid generation: A case study Numerical Methods for Partial Differential Equations. ,vol. 11, pp. 561- 571 ,(1995) , 10.1002/NUM.1690110603
Weizhang Huang, Practical aspects of formulation and solution of moving mesh partial differential equations Journal of Computational Physics. ,vol. 171, pp. 753- 775 ,(2001) , 10.1006/JCPH.2001.6809
Patrick M. Knupp, Nicolas Robidoux, A Framework for Variational Grid Generation: Conditioning the Jacobian Matrix with Matrix Norms SIAM Journal on Scientific Computing. ,vol. 21, pp. 2029- 2047 ,(2000) , 10.1137/S1064827598341633