Unconditional ideals of finite rank operators II

作者: Asvald Lima , Vegard Lima , Trond A. Abrahamsen

DOI:

关键词: Ideal (ring theory)Span (category theory)Space (mathematics)CodimensionDiscrete mathematicsMathematicsSubspace topologyNormed vector spaceRank (differential topology)Banach space

摘要: Let E be a subspace of normed space F. It is known that an ideal (resp. u-ideal) in F if and only G for every E?G?F which has finite codimension = 2). We show many cases rank operators larger it 1. In particular, we F(Y,X) W(Y,X**) all Banach spaces Y reflexive T?W(Y,X**), span( F(Y,X),{T}).

参考文章(21)
Eve Oja, Åsvald Lima, Ideals of finite rank operators, intersection properties of balls, and the approximation property Studia Mathematica. ,vol. 133, pp. 175- 186 ,(1999)
Ăsvald Lima, Property (wM*) and the unconditional metric compact approximation property Studia Mathematica. ,vol. 113, pp. 249- 263 ,(1995) , 10.4064/SM-113-3-249-263
N. J. Kalton, P. D. Saphar, G. Godefroy, Unconditional ideals in Banach spaces Studia Mathematica. ,vol. 104, pp. 13- 59 ,(1993) , 10.4064/SM-104-1-13-59
Lior Tzafriri, Joram Lindenstrauss, Classical Banach spaces ,(1973)
Peter Harmand, Dirk Werner, Wend Werner, M-Ideals in Banach Spaces and Banach Algebras ,(1993)
J. R. Retherford, Book Review: Vector measures Bulletin of the American Mathematical Society. ,vol. 84, pp. 681- 686 ,(1978) , 10.1090/S0002-9904-1978-14524-8
Eve Oja, Geometry of Banach spaces having shrinking approximations of the identity Transactions of the American Mathematical Society. ,vol. 352, pp. 2801- 2823 ,(2000) , 10.1090/S0002-9947-00-02521-6
Åsvald Lima, Eve Oja, The weak metric approximation property Mathematische Annalen. ,vol. 333, pp. 471- 484 ,(2005) , 10.1007/S00208-005-0656-0
W.J Davis, T Figiel, W.B Johnson, A Pelczynski, Factoring weakly compact operators Journal of Functional Analysis. ,vol. 17, pp. 311- 327 ,(1974) , 10.1016/0022-1236(74)90044-5
Åsvald Lima, Eve Oja, Ideals of operators, approximability in the strong operator topology, and the approximation property Michigan Mathematical Journal. ,vol. 52, pp. 253- 265 ,(2004) , 10.1307/MMJ/1091112074