Strain Shielding from Mechanically Activated Covalent Bond Formation during Nanoindentation of Graphene Delays the Onset of Failure

作者: Sandeep Kumar , David M. Parks

DOI: 10.1021/NL503641C

关键词: CrystallographyStictionDiamondComposite materialMolecular dynamicsNanoindentationElastic instabilityMaterials scienceInstabilityGrapheneMultiscale modeling

摘要: Mechanical failure of an ideal crystal is dictated either by elastic instability or a soft-mode instability. Previous interpretations nanoindentation experiments on suspended graphene sheets,1,2 however, indicate anomaly: the inferred strain in sheet directly beneath diamond indenter at measured load anomalously large compared to fracture strains predicted both and acoustic analyses. Through multiscale modeling combining results continuum, atomistic, quantum calculations, analysis experiments, we identify strain-shielding effect initiated mechanochemical interactions graphene-indenter interface as operative mechanism responsible for this anomaly. Transmission electron micrographs molecular model indenter's tip suggest that surface contains facets comprising crystallographic {111} {100} planes. Ab initio dynamics (MD) simulations confirm covalent bond (weld) formation between can be induced compressive contact stresses order achieved tests. Finite element (FEA) MD reveal shear stiction provided bonding restricts relative slip its with indenter, thus initiating local effect. As result, subsequent stress-induced interface, spatial variation continuing incremental substantially redistributed, locally shielding region limiting buildup while imparting deformation surrounding regions. The extent governed strength stiction, which depends upon level hydrogen saturation surface. We show intermediate levels enable support experimentally determined loads displacements without prematurely reaching states stress deformation.

参考文章(25)
Kouji Koyama, Kazuhiko Sunagawa, Toshiro Kotaki, Probe and cantilever ,(2006)
Xiaoding Wei, Benjamin Fragneaud, Chris A. Marianetti, Jeffrey W. Kysar, Nonlinear elastic behavior of graphene: Ab initio calculations to continuum description Physical Review B. ,vol. 80, pp. 205407- ,(2009) , 10.1103/PHYSREVB.80.205407
D. M. Clatterbuck, C. R. Krenn, Marvin L. Cohen, J. W. Morris, Phonon instabilities and the ideal strength of aluminum. Physical Review Letters. ,vol. 91, pp. 135501- 135501 ,(2003) , 10.1103/PHYSREVLETT.91.135501
S. Rothe, A. N. Andreyev, S. Antalic, A. Borschevsky, L. Capponi, T. E. Cocolios, H. De Witte, E. Eliav, D. V. Fedorov, V. N. Fedosseev, D. A. Fink, S. Fritzsche, L. Ghys, M. Huyse, N. Imai, U. Kaldor, Yuri Kudryavtsev, U. Köster, J. F. W. Lane, J. Lassen, V. Liberati, K. M. Lynch, B. A. Marsh, K. Nishio, D. Pauwels, V. Pershina, L. Popescu, T. J. Procter, D. Radulov, S. Raeder, M. M. Rajabali, E. Rapisarda, R. E. Rossel, K. Sandhu, M. D. Seliverstov, A. M. Sjödin, P. Van den Bergh, P. Van Duppen, M. Venhart, Y. Wakabayashi, K. D. A. Wendt, Measurement of the first ionization potential of astatine by laser ionization spectroscopy Nature Communications. ,vol. 4, pp. 1835- 1835 ,(2013) , 10.1038/NCOMMS2819
C. A. Marianetti, H. G. Yevick, Failure Mechanisms of Graphene under Tension Physical Review Letters. ,vol. 105, pp. 245502- ,(2010) , 10.1103/PHYSREVLETT.105.245502
S. P. Jarvis, H. Yamada, S.-I. Yamamoto, H. Tokumoto, J. B. Pethica, Direct mechanical measurement of interatomic potentials Nature. ,vol. 384, pp. 247- 249 ,(1996) , 10.1038/384247A0
C. Lee, X. Wei, J. W. Kysar, J. Hone, Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene Science. ,vol. 321, pp. 385- 388 ,(2008) , 10.1126/SCIENCE.1157996
Rodney Hill, Frederick Milstein, Principles of stability analysis of ideal crystals Physical Review B. ,vol. 15, pp. 3087- 3096 ,(1977) , 10.1103/PHYSREVB.15.3087
Steven J. Stuart, Alan B. Tutein, Judith A. Harrison, A reactive potential for hydrocarbons with intermolecular interactions Journal of Chemical Physics. ,vol. 112, pp. 6472- 6486 ,(2000) , 10.1063/1.481208