Space-Filling Curves in 3D

作者: Michael Bader

DOI: 10.1007/978-3-642-31046-1_8

关键词: Hilbert curvePure mathematicsMathematicsPeano curveSpace-filling curveSpace (mathematics)

摘要: To construct a three-dimensional Hilbert curve, we want to retain the characteristic properties of 2D curve in 3D.

参考文章(278)
Dimitris Bertsimas, Michelangelo Grigni, Worst-case examples for the spacefilling curve heuristic for the Euclidean traveling salesman problem Operations Research Letters. ,vol. 8, pp. 241- 244 ,(1989) , 10.1016/0167-6377(89)90047-3
Sheng Zhou, Christopher B. Jones, HCPO: an efficient insertion order for incremental Delaunay triangulation Information Processing Letters. ,vol. 93, pp. 37- 42 ,(2005) , 10.1016/J.IPL.2004.09.020
Kamen Yotov, Tom Roeder, Keshav Pingali, John Gunnels, Fred Gustavson, An experimental comparison of cache-oblivious and cache-conscious programs Proceedings of the nineteenth annual ACM symposium on Parallel algorithms and architectures - SPAA '07. pp. 93- 104 ,(2007) , 10.1145/1248377.1248394
G. Peano, Sur une courbe, qui remplit toute une aire plane Mathematische Annalen. ,vol. 36, pp. 157- 160 ,(1890) , 10.1007/978-3-7091-9537-6_6
Leila De Floriani, Enrico Puppo, Hierarchical triangulation for multiresolution surface description ACM Transactions on Graphics. ,vol. 14, pp. 363- 411 ,(1995) , 10.1145/225294.225297
M. Elshafei, M.S. Ahmed, Fuzzification Using Space-Filling Curves Intelligent Automation and Soft Computing. ,vol. 7, pp. 145- 157 ,(2001) , 10.1080/10798587.2000.10642813
John Mellor-Crummey, David Whalley, Ken Kennedy, Improving Memory Hierarchy Performance for Irregular Applications Using Data and Computation Reorderings International Journal of Parallel Programming. ,vol. 29, pp. 217- 247 ,(2001) , 10.1023/A:1011119519789
Michael G. Norman, Pablo Moscato, The euclidean traveling salesman problem and a space-filling curve Chaos Solitons & Fractals. ,vol. 6, pp. 389- 397 ,(1995) , 10.1016/0960-0779(95)80046-J
Jürgen Dreher, Rainer Grauer, Racoon: A parallel mesh-adaptive framework for hyperbolic conservation laws parallel computing. ,vol. 31, pp. 913- 932 ,(2005) , 10.1016/J.PARCO.2005.04.011
Michael F. Goodchild, David M. Mark, The Fractal Nature of Geographic Phenomena Annals of The Association of American Geographers. ,vol. 77, pp. 265- 278 ,(1987) , 10.1111/J.1467-8306.1987.TB00158.X