Synergistic Flow-Induced Oscillation of Multiple Cylinders in Harvesting Marine Hydrokinetic Energy

作者: Mengyu Li , Christopher C. Bernitsas , Jing Guo , Hai Sun

DOI: 10.1115/1.4048877

关键词: Power (physics)Cylinder (engine)Reynolds numberOscillationPhysicsEnergy harvestingMechanicsDamping ratioFlow (psychology)Order of magnitude

摘要: Power-to-volume density is a critical metric for all renewable energy technologies. Harnessing Marine Hydrokinetic (MHK) using single linear or nonlinear oscillator with cylinder in Flow Induced Oscillations (FIO) has proven to be an efficient and environmentally compatible method. MHK power harnessing by two rigid, circular, tandem cylinders on end-springs Reynolds number 3 × 104 ≤ Re ≤ 1.2 × 105 spacing, damping, and stiffness as parameters investigated experimentally. The objective identify optimal parameter combinations where the cylinders, close-proximity, undergo synergistic FIO more than they would individually. spring-damper controller Vck, developed Renewable Energy Laboratory (MRELab), enables embedded computer-controlled change of viscous-damping spring-stiffness fast precise realization. Experimental results amplitude response, harvesting, efficiency are presented discussed. Center-to-center spacing 1.57, 2.0, 2.57 diameters, damping ratio 0.00 < ζharness 0.24, spring 200 N/m K 1200 N/m tested. Limited three cylinders. main conclusions are: (1) For tested parameters, harness 2.56–7.5 times cylinder; corresponding 2.0–6.68. (2) harnessed upstream increased up 100%, affected downstream cylinder. (3) its benefit less interaction becomes smaller. (4) increases nearly orders magnitude.

参考文章(35)
Lin Ding, Li Zhang, Michael M. Bernitsas, Che-Chun Chang, Numerical simulation and experimental validation for energy harvesting of single-cylinder VIVACE converter with passive turbulence control Renewable Energy. ,vol. 85, pp. 1246- 1259 ,(2016) , 10.1016/J.RENENE.2015.07.088
R. W. Jay Lacey, Vincent S. Neary, James C. Liao, Eva C. Enders, Hans M. Tritico, THE IPOS FRAMEWORK: LINKING FISH SWIMMING PERFORMANCE IN ALTERED FLOWS FROM LABORATORY EXPERIMENTS TO RIVERS River Research and Applications. ,vol. 28, pp. 429- 443 ,(2012) , 10.1002/RRA.1584
D. K. P. Yue, M. A. Grosenbaugh, M. J. Wolfgang, M. S. Triantafyllou, J. M. Anderson, Near-body flow dynamics in swimming fish The Journal of Experimental Biology. ,vol. 202, pp. 2303- 2327 ,(1999) , 10.1242/JEB.202.17.2303
J.H. Lee, N. Xiros, M.M. Bernitsas, Virtual damper-spring system for VIV experiments and hydrokinetic energy conversion Ocean Engineering. ,vol. 38, pp. 732- 747 ,(2011) , 10.1016/J.OCEANENG.2010.12.014
Lin Ding, Li Zhang, Eun Soo Kim, Michael M. Bernitsas, URANS vs. experiments of flow induced motions of multiple circular cylinders with passive turbulence control Journal of Fluids and Structures. ,vol. 54, pp. 612- 628 ,(2015) , 10.1016/J.JFLUIDSTRUCTS.2015.01.003
F. S. HOVER, A. H. TECHET, M. S. TRIANTAFYLLOU, Forces on oscillating uniform and tapered cylinders in cross flow Journal of Fluid Mechanics. ,vol. 363, pp. 97- 114 ,(1998) , 10.1017/S0022112098001074
L. Foulhoux, M. M. Bernitsas, Forces and Moments on a Small Body Moving in a 3-D Unsteady Flow (With Applications to Slender Structures) Journal of Offshore Mechanics and Arctic Engineering-transactions of The Asme. ,vol. 115, pp. 91- 104 ,(1993) , 10.1115/1.2920105
Michael M. Bernitsas, Y. Ben-Simon, Kamaldev Raghavan, E. M. H. Garcia, The VIVACE Converter: Model Tests at High Damping and Reynolds Number Around 105 Journal of Offshore Mechanics and Arctic Engineering-transactions of The Asme. ,vol. 131, pp. 011102- ,(2009) , 10.1115/1.2979796
Andrew W. Mackowski, Charles H.K. Williamson, Developing a cyber-physical fluid dynamics facility for fluid–structure interaction studies Journal of Fluids and Structures. ,vol. 27, pp. 748- 757 ,(2011) , 10.1016/J.JFLUIDSTRUCTS.2011.03.020