Comparative evaluation of microfluidic circuit model performance for electroviscous flow

作者: Christian John Charles Biscombe , Malcolm Roderick Davidson , Dalton James Eric Harvie

DOI: 10.21914/ANZIAMJ.V52I0.3945

关键词: MicrochannelComparative evaluationSurface chargeNanotechnologyThermodynamicsIon currentMicrofluidicsFlow (mathematics)Electrokinetic phenomenaNanofluid

摘要: Microfluidic circuit models are useful tools for conceptualising and designing lab-on-chip devices. We evaluate the ability of two different microfluidic to accurately predict electroviscous (pressure driven) flow behaviour in a particular contraction-expansion geometry over an experimentally relevant range inlet concentrations surface charge densities. show that linear `total current model' based on relatively simple ion species constraint at nodes performs well compared non-linear `ion conserves exactly. Specifically, total model over-predicts pressure potential differences by less than 2% 7% respectively silica channels. References P. Abgrall A.-M. Gue. Lab-on-chip technologies: making network coupling it into complete microsystem---a review. J. Micromech. Microeng. , 17:R15--R49, 2007. doi:10.1088/0960-1317/17/5/R01 . A. Ajdari. Steady flows networks channels: building analogy with electrical circuits. C. R. Phys. 5:539--546, 2004. doi:10.1016/j.crhy.2004.02.012 S. H. Behrens D. G. Grier. The glass surfaces. Chem. 115(14):6716--6721, 2001. doi:10.1063/1.1404988 L. Berli. Theoretical modelling electrokinetic microchannel networks. Colloids Surf., A 301:271--280, doi:10.1016/j.colsurfa.2006.12.066 Biscombe, M. Davidson, E. Harvie. analysis. II: Implications conservation microchannels connected series, submitted Colloid Interface Sci. Bousse, Cohen, T. Nikiforov, Chow, Kopf-Sill, Dubrow, W. Parce. Electrokinetically controlled analysis systems. Annu. Rev. Biophys. Biomol. Struct. 29:155--181, 2000. doi:10.1146/annurev.biophys.29.1.155 H.-C. Chang Yossifon. Understanding electrokinetics nanoscale: perspective. Biomicrofluidics 3(1):012001, 2009. doi:10.1063/1.3056045 Erickson. Towards numerical prototyping labs-on-chip: modeling integrated Microfluid. Nanofluid. 1:301--318, 2005. doi:10.1007/s10404-005-0041-z Harvie, Davidson. I: Ion relationships thin slits pipes, Haynes, editor. CRC Handbook Chemistry Physics (Internet version). Press/Taylor Francis, Boca Raton, Florida, USA, 91st edition, 2011. Hunter. Zeta Potential Science: Principles Applications Academic Press, London, 1981. Levine, Marriott, K. Robinson. Theory narrow parallel-plate channel. Soc., Faraday Trans. 2 71:1--11, 1975. doi:10.1039/F29757100001 Ohno, Tachikawa, Manz. Microfluidics: applications analytical purposes chemistry biochemistry. Electrophoresis 29:4443--4453, 2008. doi:10.1002/elps.200800121 B. Schoch Renaud. transport through nanoslits dominated effective charge. Appl. Lett. 86(25):253111, doi:10.1063/1.1954899 Stein, Kruithof, Dekker. Surface-charge-governed nanofluidic channels. 93(3):035901, doi:10.1103/PhysRevLett.93.035901 F. van der Heyden, Streaming currents single 95(11):116104, doi:10.1103/PhysRevLett.95.116104 X. Xuan Li. Analysis 14:290--298, doi:10.1088/0960-1317/14/2/018

参考文章(14)
Robert John Hunter, Zeta potential in colloid science : principles and applications Published in <b>1981</b> in London by Academic press. ,(1981)
David G. Grier, Sven H. Behrens, The charge of glass and silica surfaces Journal of Chemical Physics. ,vol. 115, pp. 6716- 6721 ,(2001) , 10.1063/1.1404988
Reto B. Schoch, Philippe Renaud, Ion transport through nanoslits dominated by the effective surface charge Applied Physics Letters. ,vol. 86, pp. 253111- ,(2005) , 10.1063/1.1954899
Ken-ichi Ohno, Kaoru Tachikawa, Andreas Manz, Microfluidics: applications for analytical purposes in chemistry and biochemistry. Electrophoresis. ,vol. 29, pp. 4443- 4453 ,(2008) , 10.1002/ELPS.200800121
Claudio L.A. Berli, Theoretical modelling of electrokinetic flow in microchannel networks Colloids and Surfaces A: Physicochemical and Engineering Aspects. ,vol. 301, pp. 271- 280 ,(2007) , 10.1016/J.COLSURFA.2006.12.066
Xiangchun Xuan, Dongqing Li, Analysis of electrokinetic flow in microfluidic networks Journal of Micromechanics and Microengineering. ,vol. 14, pp. 290- 298 ,(2004) , 10.1088/0960-1317/14/2/018
Hsueh-Chia Chang, Gilad Yossifon, Understanding electrokinetics at the nanoscale: A perspective Biomicrofluidics. ,vol. 3, pp. 012001- ,(2009) , 10.1063/1.3056045
Samuel Levine, John R. Marriott, Kenneth Robinson, Theory of electrokinetic flow in a narrow parallel-plate channel Journal of the Chemical Society, Faraday Transactions 2. ,vol. 71, pp. 1- 11 ,(1975) , 10.1039/F29757100001