作者: Christian John Charles Biscombe , Malcolm Roderick Davidson , Dalton James Eric Harvie
DOI: 10.21914/ANZIAMJ.V52I0.3945
关键词: Microchannel 、 Comparative evaluation 、 Surface charge 、 Nanotechnology 、 Thermodynamics 、 Ion current 、 Microfluidics 、 Flow (mathematics) 、 Electrokinetic phenomena 、 Nanofluid
摘要: Microfluidic circuit models are useful tools for conceptualising and designing lab-on-chip devices. We evaluate the ability of two different microfluidic to accurately predict electroviscous (pressure driven) flow behaviour in a particular contraction-expansion geometry over an experimentally relevant range inlet concentrations surface charge densities. show that linear `total current model' based on relatively simple ion species constraint at nodes performs well compared non-linear `ion conserves exactly. Specifically, total model over-predicts pressure potential differences by less than 2% 7% respectively silica channels. References P. Abgrall A.-M. Gue. Lab-on-chip technologies: making network coupling it into complete microsystem---a review. J. Micromech. Microeng. , 17:R15--R49, 2007. doi:10.1088/0960-1317/17/5/R01 . A. Ajdari. Steady flows networks channels: building analogy with electrical circuits. C. R. Phys. 5:539--546, 2004. doi:10.1016/j.crhy.2004.02.012 S. H. Behrens D. G. Grier. The glass surfaces. Chem. 115(14):6716--6721, 2001. doi:10.1063/1.1404988 L. Berli. Theoretical modelling electrokinetic microchannel networks. Colloids Surf., A 301:271--280, doi:10.1016/j.colsurfa.2006.12.066 Biscombe, M. Davidson, E. Harvie. analysis. II: Implications conservation microchannels connected series, submitted Colloid Interface Sci. Bousse, Cohen, T. Nikiforov, Chow, Kopf-Sill, Dubrow, W. Parce. Electrokinetically controlled analysis systems. Annu. Rev. Biophys. Biomol. Struct. 29:155--181, 2000. doi:10.1146/annurev.biophys.29.1.155 H.-C. Chang Yossifon. Understanding electrokinetics nanoscale: perspective. Biomicrofluidics 3(1):012001, 2009. doi:10.1063/1.3056045 Erickson. Towards numerical prototyping labs-on-chip: modeling integrated Microfluid. Nanofluid. 1:301--318, 2005. doi:10.1007/s10404-005-0041-z Harvie, Davidson. I: Ion relationships thin slits pipes, Haynes, editor. CRC Handbook Chemistry Physics (Internet version). Press/Taylor Francis, Boca Raton, Florida, USA, 91st edition, 2011. Hunter. Zeta Potential Science: Principles Applications Academic Press, London, 1981. Levine, Marriott, K. Robinson. Theory narrow parallel-plate channel. Soc., Faraday Trans. 2 71:1--11, 1975. doi:10.1039/F29757100001 Ohno, Tachikawa, Manz. Microfluidics: applications analytical purposes chemistry biochemistry. Electrophoresis 29:4443--4453, 2008. doi:10.1002/elps.200800121 B. Schoch Renaud. transport through nanoslits dominated effective charge. Appl. Lett. 86(25):253111, doi:10.1063/1.1954899 Stein, Kruithof, Dekker. Surface-charge-governed nanofluidic channels. 93(3):035901, doi:10.1103/PhysRevLett.93.035901 F. van der Heyden, Streaming currents single 95(11):116104, doi:10.1103/PhysRevLett.95.116104 X. Xuan Li. Analysis 14:290--298, doi:10.1088/0960-1317/14/2/018