RELATIVE PERTURBATION THEORY FOR DIAGONALLY DOMINANT MATRICES

作者: Megan Dailey , Froilán M. Dopico , Qiang Ye

DOI: 10.1137/130943613

关键词: MathematicsLinear algebraMathematical analysisLinear systemCondition numberEigenvalues and eigenvectorsFactorizationSingular valueDiagonally dominant matrixPositive-definite matrix

摘要: In this paper, strong relative perturbation bounds are developed for a number of linear algebra problems involving diagonally dominant matrices. The key point is to parameterize matrices using their off-diagonal entries and parts consider small componentwise perturbations these parameters. This allows us obtain new the inverse, solution systems, symmetric indefinite eigenvalue problem, singular value nonsymmetric problem. These much stronger than traditional results, since they independent either standard condition or magnitude eigenvalues/singular values. Together with previously derived LDU factorization positive definite paper presents complete detailed account structured theory

参考文章(64)
Anders Barrlund, Perturbation bounds for the LDL H and LU decompositions Bit Numerical Mathematics. ,vol. 31, pp. 358- 363 ,(1991) , 10.1007/BF01931295
Ji-guang Sun, G. W. Stewart, Matrix perturbation theory ,(1990)
Roger A Horn, Topics in Matrix Analysis ,(2010)
James W. Demmel, Applied Numerical Linear Algebra ,(1997)
Ren-Cang Li, Relative Perturbation Theory: I. Eigenvalue and Singular Value Variations SIAM Journal on Matrix Analysis and Applications. ,vol. 19, pp. 956- 982 ,(1998) , 10.1137/S089547989629849X
Shreemayee Bora, Structured Eigenvalue Condition Number and Backward Error of a Class of Polynomial Eigenvalue Problems SIAM Journal on Matrix Analysis and Applications. ,vol. 31, pp. 900- 917 ,(2009) , 10.1137/060675769
Beresford N. Parlett, A Bidiagonal Matrix Determines Its Hyperbolic SVD to Varied Relative Accuracy SIAM Journal on Matrix Analysis and Applications. ,vol. 26, pp. 1022- 1057 ,(2005) , 10.1137/S0895479803424980
M Isabel Bueno, Froilán M Dopico, None, Stability and sensitivity of tridiagonal LU factorization without pivoting Bit Numerical Mathematics. ,vol. 44, pp. 651- 673 ,(2004) , 10.1007/S10543-004-6025-7
Beresford N. Parlett, Spectral sensitivity of products of bidiagonals Linear Algebra and its Applications. pp. 417- 431 ,(1998) , 10.1016/S0024-3795(97)10052-0