The Diameter of the Rubik's Cube Group Is Twenty

作者: Tomas Rokicki , Herbert Kociemba , Morley Davidson , John Dethridge

DOI: 10.1137/120867366

关键词: CombinatoricsPocket CubeMathematicsCube (algebra)Rubik's Cube groupTwistDiscrete mathematicsFace (geometry)Group theoryCosetSymmetry (geometry)General Mathematics

摘要: … the 4.3 quintillion positions of the cube, by leveraging symmetry … The cube has lived up to Erno Rubik’s intentions—as a form … proof that every position of Rubik’s Cube 1 can be solved in …

参考文章(9)
David Singmaster, Notes on Rubik's 'Magic Cube' ,(1981)
Tomas Rokicki, Twenty-Two Moves Suffice for Rubik’s Cube ® The Mathematical Intelligencer. ,vol. 32, pp. 33- 40 ,(2010) , 10.1007/S00283-009-9105-3
Daniel Kunkle, Gene Cooperman, Twenty-six moves suffice for Rubik's cube international symposium on symbolic and algebraic computation. pp. 235- 242 ,(2007) , 10.1145/1277548.1277581
Richard E. Korf, Linear-time disk-based implicit graph search Journal of the ACM. ,vol. 55, pp. 1- 40 ,(2008) , 10.1145/1455248.1455250
Mansour Mahmoud, Mohammed A Alghamdi, Ravi P Agarwal, None, New upper bounds of n Journal of Inequalities and Applications. ,vol. 2012, pp. 27- ,(2012) , 10.1186/1029-242X-2012-27
Daniel Kunkle, Gene Cooperman, Harnessing parallel disks to solve Rubik's cube Journal of Symbolic Computation. ,vol. 44, pp. 872- 890 ,(2009) , 10.1016/J.JSC.2008.04.013
Richard E. Korf, Depth-first iterative-deepening: an optimal admissible tree search Artificial Intelligence. ,vol. 27, pp. 97- 109 ,(1985) , 10.1016/0004-3702(85)90084-0
Richard E. Korf, Finding optimal solutions to Rubik's cube using pattern databases national conference on artificial intelligence. pp. 700- 705 ,(1997)
Tomas Rokicki, Twenty-Five Moves Suffice for Rubik's Cube arXiv: Symbolic Computation. ,(2008)