Generalised Spatio Temporal Feature Based Important Activity Synopsis Generation

作者: Tapas Badal , Neeta Nain , Mushtaq Ahmed

DOI: 10.1109/SITIS.2017.60

关键词: TrajectoryContext (language use)ScalabilityMotion (physics)Structure (mathematical logic)Signature (logic)Feature extractionObject detectionComputer scienceData mining

摘要: Traditional video analysis methods can generate summary of day's long videos. While generating synopsis maintaining the motion structure important activities present in a sequence is great concern research communities and industry. In this paper, we an automatic scalable approach for detection based on different spatiotemporal criteria used as signature. To maintain context cues propose online preserved approach, which retain behavior interactions between objects original while condensing much content possible. A hierarchical fashion employed to efficiently search sequence, those both spatial collision temporal consistency are considered. Experimental results numerous (six) sequences demonstrate promise proposed approach.

参考文章(22)
Florian Pfleiderer, Alireza Sahami Shirazi, Hendrik Glück, Markus Funk, Albrecht Schmidt, MediaBrain: Annotating Videos based on Brain-Computer Interaction Mensch & Computer. pp. 263- 272 ,(2012)
A.J. Lipton, H. Fujiyoshi, R.S. Patil, Moving target classification and tracking from real-time video workshop on applications of computer vision. pp. 8- 14 ,(1998) , 10.1109/ACV.1998.732851
Yale Song, Jordi Vallmitjana, Amanda Stent, Alejandro Jaimes, TVSum: Summarizing web videos using titles computer vision and pattern recognition. pp. 5179- 5187 ,(2015) , 10.1109/CVPR.2015.7299154
Wei Fu, Jinqiao Wang, Liangke Gui, Hanqing Lu, Songde Ma, Online video synopsis of structured motion Neurocomputing. ,vol. 135, pp. 155- 162 ,(2014) , 10.1016/J.NEUCOM.2013.12.041
Liang Chen, Yipeng Zhou, Dah Ming Chiu, Smart Streaming for Online Video Services IEEE Transactions on Multimedia. ,vol. 17, pp. 485- 497 ,(2015) , 10.1109/TMM.2015.2405343
Juho Kim, Phu Tran Nguyen, Sarah Weir, Philip J. Guo, Robert C. Miller, Krzysztof Z. Gajos, Crowdsourcing step-by-step information extraction to enhance existing how-to videos human factors in computing systems. pp. 4017- 4026 ,(2014) , 10.1145/2556288.2556986
Helmut Grabner, Fabian Nater, Michel Druey, Luc Van Gool, Visual interestingness in image sequences acm multimedia. pp. 1017- 1026 ,(2013) , 10.1145/2502081.2502109
Sagnik Dhar, Vicente Ordonez, Tamara L Berg, High level describable attributes for predicting aesthetics and interestingness computer vision and pattern recognition. pp. 1657- 1664 ,(2011) , 10.1109/CVPR.2011.5995467
Shao-Yu Wu, Ruck Thawonmas, Kuan-Ta Chen, Video summarization via crowdsourcing Proceedings of the 2011 annual conference extended abstracts on Human factors in computing systems - CHI EA '11. pp. 1531- 1536 ,(2011) , 10.1145/1979742.1979803
Yong Jae Lee, J. Ghosh, K. Grauman, Discovering important people and objects for egocentric video summarization computer vision and pattern recognition. pp. 1346- 1353 ,(2012) , 10.1109/CVPR.2012.6247820