In situ analysis of cryogenic strain of AISI 316L stainless steel using synchrotron radiation

作者: Maicon Rogerio Crivoi , John Jairo Hoyos , Marcel Tadashi Izumi , Denilson José Marcolino de Aguiar , Ricardo Sanson Namur

DOI: 10.1016/J.CRYOGENICS.2019.103020

关键词: Materials scienceAusteniteUltimate tensile strengthDiffusionless transformationWork hardeningComposite materialAustenitic stainless steelMartensitePlasticityStacking-fault energy

摘要: Abstract AISI 316L austenitic stainless steel was tested by simultaneous uniaxial tensile tests and X-ray diffraction measurements at room cryogenic temperatures. The decrease in temperature reduced the stacking fault energy, which increase rate of martensitic transformation. This led to an intensive formation martensite during early stage deformation, consequently induced a discontinuous yielding. strength higher than that obtained temperature, while ductility did not change significantly. behavior could be associated with Transformation Induced Plasticity (TRIP) effect since α′ increased work hardening rate. In addition, threshold strain for onset yielding seems related lattice microstrain austenite martensite.

参考文章(48)
Shu Yan Zhang, Etienne Compagnon, Baptiste Godin, Alexander M. Korsunsky, Investigation of Martensite Transformation in 316L Stainless Steel Materials Today: Proceedings. ,vol. 2, ,(2015) , 10.1016/J.MATPR.2015.05.035
Juciane Maria Alves, Luiz Paulo Brandao, Andersan dos Santos Paula, The Influence of Sample Preparation on the Quantitative Analysis of the Volume Fraction of Martensite Formed in a 304l Trip Steel Materials Research-ibero-american Journal of Materials. ,vol. 18, pp. 159- 163 ,(2015) , 10.1590/1516-1439.347714
Barbara Rossi, Discussion on the use of stainless steel in constructions in view of sustainability Thin-walled Structures. ,vol. 83, pp. 182- 189 ,(2014) , 10.1016/J.TWS.2014.01.021
Angelo Fernando Padilha, Ronald Lesley Plaut, Paulo Rangel Rios, Annealing of Cold-worked Austenitic Stainless Steels. ISIJ International. ,vol. 43, pp. 135- 143 ,(2003) , 10.2355/ISIJINTERNATIONAL.43.135
B. Ravi Kumar, S. K. Das, B. Mahato, R. N. Ghosh, Role of strain-induced martensite on microstructural evolution during annealing of metastable austenitic stainless steel Journal of Materials Science. ,vol. 45, pp. 911- 918 ,(2010) , 10.1007/S10853-009-4020-8
J.R.C. Guimarães, P.R. Rios, The mechanical-induced martensite transformation in Fe–Ni–C alloys Acta Materialia. ,vol. 84, pp. 436- 442 ,(2015) , 10.1016/J.ACTAMAT.2014.10.040
Noriyuki Tsuchida, Yuko Yamaguchi, Yoshiki Morimoto, Tomoyuki Tonan, Yoshinori Takagi, Rintaro Ueji, Effects of Temperature and Strain Rate on TRIP Effect in SUS301L Metastable Austenitic Stainless Steel Isij International. ,vol. 53, pp. 1881- 1887 ,(2013) , 10.2355/ISIJINTERNATIONAL.53.1881
S. S. Babu, E. D. Specht, S. A. David, E. Karapetrova, P. Zschack, M. Peet, H. K. D. H. Bhadeshia, In-situ observations of lattice parameter fluctuations in austenite and transformation to bainite Metallurgical and Materials Transactions A-physical Metallurgy and Materials Science. ,vol. 36, pp. 3281- 3289 ,(2005) , 10.1007/S11661-005-0002-X
F. Lecroisey, A. Pineau, Martensitic transformations induced by plastic deformation in the Fe-Ni-Cr-C system Metallurgical and Materials Transactions B-process Metallurgy and Materials Processing Science. ,vol. 3, pp. 391- 400 ,(1972) , 10.1007/BF02642042
Kouki Tomimura, Setsuo Takaki, Youichi Tokunaga, Reversion Mechanism from Deformation Induced Martensite to Austenite in Metastable Austenitic Stainless Steels. Isij International. ,vol. 31, pp. 1431- 1437 ,(1991) , 10.2355/ISIJINTERNATIONAL.31.1431