Arrangements and Their Applications

作者: Pankaj K. Agarwal , Micha Sharir

DOI: 10.1016/B978-044482537-7/50003-6

关键词: Motion planningSurface (mathematics)Plane (geometry)Decomposition (computer science)TopologyVisualizationGeometryMathematicsPlanarSpace (mathematics)Range searching

摘要: Abstract The arrangement of a finite collection geometric objects is the decomposition space into connected cells induced by them. We survey combinatorial and algorithmic properties arrangements arcs in plane surface patches higher dimensions. present many applications to problems motion planning, visualization, range searching, molecular modeling, optimization. Some results involving planar have been presented Chapter 1 this Handbook, are extended chapter

参考文章(329)
Steven K. Feiner, Lawrence J. Rosenblum, Steve Bryson, Virtual Reality Unbound IEEE Computer Graphics and Applications. ,vol. 15, pp. 19- 21 ,(1995) , 10.1109/MCG.1995.10030
M. Ajtai, V. Chvátal, M.M. Newborn, E. Szemerédi, Crossing-Free Subgraphs Theory and Practice of Combinatorics - A collection of articles honoring Anton Kotzig on the occasion of his sixtieth birthday. ,vol. 60, pp. 9- 12 ,(1982) , 10.1016/S0304-0208(08)73484-4
János Pach, Finite point configurations Handbook of discrete and computational geometry. pp. 3- 18 ,(1997) , 10.1201/9781420035315.CH1
Raimund Seidel, Convex hull computations Handbook of discrete and computational geometry. pp. 361- 375 ,(1997) , 10.1201/9781420035315.CH22
Jiří Matoušek, Epsilon-Nets and Computational Geometry Springer Berlin Heidelberg. pp. 69- 89 ,(1993) , 10.1007/978-3-642-58043-7_4
Marie-Françoise Roy, Joos Heintz, Pablo Solernó, On the Complexity of Semialgebraic Sets. ifip congress. pp. 293- 298 ,(1989)
Micha Sharir, Arrangements of Surfaces in Higher Dimensions: Envelopes Single Cells and Other Recent Developments. canadian conference on computational geometry. pp. 181- 186 ,(1993)
Tomás Recio, Marie-Françoise Roy, Joos Heintz, Algorithms in Real Algebraic Geometry and Applications to Computational Geometry. Discrete and Computational Geometry. pp. 137- 164 ,(1990)
L. J. Guibas, M. H. Overmars, J. M. Robert, The exact fitting problem for points Harbour Centre Campus, Simon Fraser University. ,(1991)
Paul Erdös, László Lovász, A Simmons, Ernst G Straus, None, Dissection Graphs of Planar Point Sets A Survey of Combinatorial Theory. pp. 139- 149 ,(1973) , 10.1016/B978-0-7204-2262-7.50018-1