Quantum coding with finite resources.

作者: Marco Tomamichel , Mario Berta , Joseph M. Renes

DOI: 10.1038/NCOMMS11419

关键词: Quantum informationComputer scienceQuantum channelTopologyQuantum error correctionQuantum operationClassical capacityQuantum capacityQuantum networkAmplitude damping channel

摘要: The quantum capacity of a memoryless channel determines the maximal rate at which we can communicate reliably over asymptotically many uses channel. Here illustrate that this asymptotic characterization is insufficient in practical scenarios where decoherence severely limits our ability to manipulate large systems encoder and decoder. In settings, should instead focus on optimal trade-off between three parameters: code, size devices decoder, fidelity transmission. We find approximate exact characterizations for various channels interest, including dephasing, depolarizing erasure channels. each case, parameterized by second parameter, dispersion. process, develop several bounds are valid general be computed small instances.

参考文章(53)
Nilanjana Datta, Marco Tomamichel, Mark M. Wilde, Second-order coding rates for entanglement-assisted communication 2015 IEEE International Symposium on Information Theory (ISIT). pp. 2772- 2776 ,(2015) , 10.1109/ISIT.2015.7282961
Fumio Hiai, Dénes Petz, The proper formula for relative entropy and its asymptotics in quantum probability Communications in Mathematical Physics. ,vol. 143, pp. 99- 114 ,(1991) , 10.1007/BF02100287
David P. DiVincenzo, Peter W. Shor, John A. Smolin, Quantum-channel capacity of very noisy channels Physical Review A. ,vol. 57, pp. 830- 839 ,(1998) , 10.1103/PHYSREVA.57.830
Patrick Hayden, Michał Horodecki, Andreas Winter, Jon Yard, A Decoupling Approach to the Quantum Capacity Open Systems & Information Dynamics. ,vol. 15, pp. 7- 19 ,(2008) , 10.1142/S1230161208000043
Seth Lloyd, Capacity of the noisy quantum channel Physical Review A. ,vol. 55, pp. 1613- 1622 ,(1997) , 10.1103/PHYSREVA.55.1613
Howard Barnum, M. A. Nielsen, Benjamin Schumacher, Information transmission through a noisy quantum channel Physical Review A. ,vol. 57, pp. 4153- 4175 ,(1998) , 10.1103/PHYSREVA.57.4153
Charles H. Bennett, Gilles Brassard, Claude Crépeau, Richard Jozsa, Asher Peres, William K. Wootters, Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels Physical Review Letters. ,vol. 70, pp. 1895- 1899 ,(1993) , 10.1103/PHYSREVLETT.70.1895
Benjamin Schumacher, M. A. Nielsen, Quantum data processing and error correction Physical Review A. ,vol. 54, pp. 2629- 2635 ,(1996) , 10.1103/PHYSREVA.54.2629
William Matthews, Stephanie Wehner, Finite blocklength converse bounds for quantum channels IEEE Transactions on Information Theory. ,vol. 60, pp. 7317- 7329 ,(2014) , 10.1109/TIT.2014.2353614
Marco Tomamichel, Masahito Hayashi, A Hierarchy of Information Quantities for Finite Block Length Analysis of Quantum Tasks IEEE Transactions on Information Theory. ,vol. 59, pp. 7693- 7710 ,(2013) , 10.1109/TIT.2013.2276628