Variational problems of least area type with constraints

作者: Italo Tamanini

DOI: 10.1007/BF02824982

关键词: CurvatureMathematical analysisNumerical analysisAlgebraic geometryPure mathematicsArea typeConstraint (information theory)Integrable systemMathematicsType (model theory)Term (logic)

摘要: We establish a new regularity result for boundaries of sets minimizing the area functional perturbed by curvature term, and subject to mass constraint type $$\int\limits_K {g(x)dx = V} $$ , with fixed, strictly positive integrable functiong(x). The existence Lagrange parameters is also considered.

参考文章(21)
The equilibrium configuration of liquid drops. Crelle's Journal. ,vol. 321, pp. 53- 63 ,(1981) , 10.1515/CRLL.1981.321.53
Italo Tamanini, Boundaries of Caccioppoli sets with Hölder-continuois normal vector. Crelle's Journal. ,vol. 334, pp. 27- 39 ,(1982)
Umberto Massari, Mario Miranda, Minimal Surfaces of Codimension One ,(1984)
Robert Finn, Equilibrium Capillary Surfaces ,(1985)
Charles Bradfield Morrey, Multiple Integrals in the Calculus of Variations ,(1966)
Michael Grüter, Boundary regularity for solutions of a partitioning problem Archive for Rational Mechanics and Analysis. ,vol. 97, pp. 261- 270 ,(1987) , 10.1007/BF00250810
Morton E. Gurtin, On phase transitions with bulk, interfacial, and boundary Energy Archive for Rational Mechanics and Analysis. ,vol. 96, pp. 429- 450 ,(1986) , 10.1007/978-3-642-83743-2_22
E. Gonzalez, Umberto Massari, I. Tamanini, EXISTENCE AND REGULARITY FOR THE PROBLEM OF A PENDENT LIQUID DROP Pacific Journal of Mathematics. ,vol. 88, pp. 399- 420 ,(1980) , 10.2140/PJM.1980.88.399