A linear process in wall-bounded turbulent shear flows

作者: John Kim , Junwoo Lim

DOI: 10.1063/1.870437

关键词: Nonlinear systemNavier–Stokes equationsTurbulence modelingPhysicsDirect numerical simulationK-omega turbulence modelClassical mechanicsParticle-laden flowsMechanicsTurbulence kinetic energyK-epsilon turbulence model

摘要: … The transient growth due to non-normality of the eigenmodes of the linearized Navier–Stokes (N–S) equations has received much attention during the past several years see, for …

参考文章(16)
Sanjay S. Joshi, Jason L. Speyer, John Kim, A systems theory approach to the feedback stabilization of infinitesimal and finite-amplitude disturbances in plane Poiseuille flow Journal of Fluid Mechanics. ,vol. 332, pp. 157- 184 ,(1997) , 10.1017/S0022112096003746
Kathryn M. Butler, Brian F. Farrell, Three‐dimensional optimal perturbations in viscous shear flow Physics of Fluids. ,vol. 4, pp. 1637- 1650 ,(1992) , 10.1063/1.858386
Satish C. Reddy, Dan S. Henningson, Energy growth in viscous channel flows Journal of Fluid Mechanics. ,vol. 252, pp. 209- 238 ,(1993) , 10.1017/S0022112093003738
Dan S. Henningson, Satish C. Reddy, On the role of linear mechanisms in transition to turbulence Physics of Fluids. ,vol. 6, pp. 1396- 1398 ,(1994) , 10.1063/1.868251
Haecheon Choi, Parviz Moin, John Kim, Active turbulence control for drag reduction in wall-bounded flows Journal of Fluid Mechanics. ,vol. 262, pp. 75- 110 ,(1994) , 10.1017/S0022112094000431
Brian F. Farrell, Petros J. Ioannou, Stochastic forcing of the linearized Navier–Stokes equations Physics of Fluids. ,vol. 5, pp. 2600- 2609 ,(1993) , 10.1063/1.858894
Changhoon Lee, John Kim, David Babcock, Rodney Goodman, Application of neural networks to turbulence control for drag reduction Physics of Fluids. ,vol. 9, pp. 1740- 1747 ,(1997) , 10.1063/1.869290
Sanjay S. Joshi, Jason L. Speyer, John Kim, Finite Dimensional Optimal Control of Poiseuille Flow Journal of Guidance, Control, and Dynamics. ,vol. 22, pp. 340- 348 ,(1999) , 10.2514/2.4383