The Non-Linear Laplacian for Finsler Manifolds

作者: Zhongmin Shen

DOI: 10.1007/978-94-011-5282-2_12

关键词: Finsler manifoldMathematicsCurvatureFunction (mathematics)Nonlinear systemTangentLaplace operatorPure mathematicsSobolev spaceRicci curvature

摘要: For a Finsler manifold (M,F), there is canonical energy function E defined on the Sobolev space. The variation of gives rises to non-linear Laplacian. Although this Laplacian non-linear, it has close relationship with curvatures and other geometric quantities. There are two involved. first one Ricci curvature, which Riemannian quantity, second mean tangent curvature in [S2]. non-Riemannian quantity. In report, we shall briefly describe recent developments study

参考文章(8)
Ernst Heintze, Hermann Karcher, A general comparison theorem with applications to volume estimates for submanifolds Annales Scientifiques De L Ecole Normale Superieure. ,vol. 11, pp. 451- 470 ,(1978) , 10.24033/ASENS.1354
M. Gromov, Dimension, non-linear spectra and width Springer, Berlin, Heidelberg. pp. 132- 184 ,(1988) , 10.1007/BFB0081739
Zhongmin Shen, Volume Comparison and Its Applications in Riemann–Finsler Geometry Advances in Mathematics. ,vol. 128, pp. 306- 328 ,(1997) , 10.1006/AIMA.1997.1630
G. BELLETTINI, M. PAOLINI, Anisotropic motion by mean curvature in the context of Finsler geometry Hokkaido Mathematical Journal. ,vol. 25, pp. 537- 566 ,(1996) , 10.14492/HOKMJ/1351516749
John Douglas Moore, Submanifolds of constant positive curvature I Duke Mathematical Journal. ,vol. 44, pp. 449- 484 ,(1977) , 10.1215/S0012-7094-77-04421-0
P. Berard, G. Besson, S. Gallot, Sur une inégalité isopérimétrique qui généralise celle de Paul Lévy-Gromov Inventiones Mathematicae. ,vol. 80, pp. 295- 308 ,(1985) , 10.1007/BF01388608
Shiu-Yuen Cheng, Eigenvalue comparison theorems and its geometric applications Mathematische Zeitschrift. ,vol. 143, pp. 289- 297 ,(1975) , 10.1007/BF01214381
Herbert Busemann, Intrinsic Area The Annals of Mathematics. ,vol. 48, pp. 234- None ,(1947) , 10.2307/1969168