Superdiffusive trajectories in Brownian motion.

作者: Jérôme Duplat , Simon Kheifets , Tongcang Li , Mark G. Raizen , Emmanuel Villermaux

DOI: 10.1103/PHYSREVE.87.020105

关键词: Stochastic processPhysicsLangevin equationDisplacement (vector)Dispersion (water waves)Classical mechanicsMotion (geometry)Brownian motionParticleDirect proof

摘要: The Brownian motion of a microscopic particle in fluid is one the cornerstones statistical physics and paradigm random process. One most powerful tools to quantify it was provided by Langevin, who explicitly accounted for short-time correlated "thermal" force. Langevin picture predicts ballistic motion, ~t(2) at scales, diffusive ~t long-time where x displacement during time t, average taken over thermal distribution initial conditions. equation also superdiffusive regime, ~t(3), under condition that velocity fixed rather than distributed thermally. We analyze an optically trapped air indeed find t(3) dispersion. This observation direct proof existence random, rapidly varying force imagined Langevin.

参考文章(17)
F. Reif, Fundamentals of Statistical and Thermal Physics Fundamentals of Statistical and Thermal Physics. ,(1965)
M. von Smoluchowski, Zur kinetischen Theorie der Brownschen Molekularbewegung und der Suspensionen Annalen der Physik. ,vol. 326, pp. 756- 780 ,(1906) , 10.1002/ANDP.19063261405
Jean Baptiste Joseph Fourier, Théorie Analytique de la Chaleur Cambridge University Press. ,(2009) , 10.1017/CBO9780511693229
Perrin, Les Atomes Nouveau Monde. ,(2013) , 10.14375/NP.9782369430230
G. I. Taylor, Diffusion by Continuous Movements Proceedings of The London Mathematical Society. pp. 196- 212 ,(1922) , 10.1112/PLMS/S2-20.1.196
G. E. Uhlenbeck, L. S. Ornstein, On the Theory of the Brownian Motion Physical Review. ,vol. 36, pp. 823- 841 ,(1930) , 10.1103/PHYSREV.36.823
S. Chandrasekhar, Stochastic problems in Physics and Astronomy Reviews of Modern Physics. ,vol. 15, pp. 1- 89 ,(1943) , 10.1103/REVMODPHYS.15.1
T. Li, S. Kheifets, D. Medellin, M. G. Raizen, Measurement of the Instantaneous Velocity of a Brownian Particle Science. ,vol. 328, pp. 1673- 1675 ,(2010) , 10.1126/SCIENCE.1189403
Rongxin Huang, Isaac Chavez, Katja M. Taute, Branimir Lukić, Sylvia Jeney, Mark G. Raizen, Ernst-Ludwig Florin, Direct observation of the full transition from ballistic to diffusive Brownian motion in a liquid Nature Physics. ,vol. 7, pp. 576- 580 ,(2011) , 10.1038/NPHYS1953