On Existence analysis of steady flows of generalized Newtonian fluids with concentration dependent power-law index

作者: Miroslav Bulíček , Petra Pustějovská

DOI: 10.1016/J.JMAA.2012.12.066

关键词: Generalized Newtonian fluidSobolev spaceGalerkin methodPartial differential equationFlow (mathematics)Mathematical analysisWeak solutionFunction spaceMathematicsMonotonic function

摘要: Abstract We study a system of partial differential equations describing steady flow an incompressible generalized Newtonian fluid, wherein the Cauchy stress is concentration dependent. Namely, we consider coupled Navier–Stokes and convection–diffusion equation with non-linear diffusivity. prove existence weak solution for certain class models by using generalization monotone operator theory which fits into framework Sobolev spaces variable exponent. Such involved since function spaces, where look solution, are “dependent” itself, thus, a priori do not know them. This leads us to principal assumptions on model parameters that ensure Holder continuity present here constructive proof based Galerkin method allows obtain result very general models.

参考文章(42)
Lars Diening, Michael Růžička, Jörg Wolf, Existence of weak solutions for unsteady motions of generalized Newtonian fluids Annali Della Scuola Normale Superiore Di Pisa-classe Di Scienze. ,vol. 9, pp. 1- 46 ,(2010) , 10.2422/2036-2145.2010.1.01
M. Bulíček, J. Málek, K.R. Rajagopal, Mathematical results concerning unsteady flows of chemically reacting incompressible fluids Partial Differential Equations and Fluid Mechanics. pp. 26- 53 ,(2009) , 10.1017/CBO9781139107112.003
Gerhard Unger, Convergence Orders of Iterative Methods for Nonlinear Eigenvalue Problems Springer, Berlin, Heidelberg. pp. 217- 237 ,(2013) , 10.1007/978-3-642-30316-6_10
Petteri Harjulehto, Lars Diening, Michael Ruzicka, Peter Hästö, Lebesgue and Sobolev Spaces with Variable Exponents ,(2011)
W. Orlicz, Über konjugierte Exponentenfolgen Studia Mathematica. ,vol. 3, pp. 200- 211 ,(1931) , 10.4064/SM-3-1-200-211
Michael Ruzicka, Electrorheological Fluids: Modeling and Mathematical Theory Lecture Notes in Mathematics. ,vol. 1748, ,(2000) , 10.1007/BFB0104029
Ondrej Kováčik, Jiří Rákosník, On spaces $L^{p(x)}$ and $W^{k, p(x)}$ Czechoslovak Mathematical Journal. ,vol. 41, pp. 592- 618 ,(1991) , 10.21136/CMJ.1991.102493
Julian Musielak, Orlicz Spaces and Modular Spaces ,(1983)