作者: T Guhr , H.A Weidenmüller
DOI: 10.1016/0003-4916(89)90006-7
关键词: Eigenvalues and eigenvectors 、 Physics 、 Nuclear structure 、 Hamiltonian (quantum mechanics) 、 Mathematical Operators 、 Excitation 、 Quantum mechanics 、 Gaussian 、 Monte Carlo method 、 Harmonic oscillator 、 General Physics and Astronomy
摘要: We consider a regular Hamiltonian {ital H}{sub 0} plus perturbation V}. assume that V} is member of the Gaussian orthogonal ensemble (GOE). show H}+{ital 0}+{ital acquires local GOE fluctuation properties whenever spreading width {Gamma} due to exceeds several ten mean spacings 0}, i.e., for very weak illustrate this analytical result with Monte Carlo simulations. use our argue at MeV excitation energy, collectivity and chaos coexist in nuclei. propose novel experimental test attainment decay high-spin states. {copyright} 1989 Academic Press, Inc.