PBWfor an inclusion of Lie algebras

作者: Damien Calaque , Andrei Căldăraru , Junwu Tu

DOI: 10.1016/J.JALGEBRA.2012.12.008

关键词: Killing formReal formLie conformal algebra(g,K)-moduleAdjoint representationDiscrete mathematicsNon-associative algebraMathematicsRepresentation theoryPure mathematicsRepresentation of a Lie group

摘要: Abstract Let h ⊂ g be an inclusion of Lie algebras with quotient -module n . There is a natural degree filtration on the U ( ) / whose associated graded isomorphic to S We give necessary and sufficient condition for existence splitting this filtration. In turn such yields isomorphism between -modules For diagonal embedding ⊕ automatically satisfied we recover classical Poincare–Birkhoff–Witt theorem. The main theorem its proof are direct translations results in algebraic geometry, obtained using ad hoc dictionary. This suggests unified framework allowing simultaneous study varieties, closely related work direction way.

参考文章(7)
Luc Illusie, Complexe Cotangent et Déformations I Lecture Notes in Mathematics. ,(1971) , 10.1007/BFB0059052
Charles Torossian, Applications de la bi-quantification à la théorie de Lie arXiv: Quantum Algebra. pp. 315- 342 ,(2011) , 10.1007/978-0-8176-4735-3_15
Andrei Caldararu, Dima Arinkin, When is the self-intersection of a subvariety a fibration? arXiv: Algebraic Geometry. ,(2010)
Alexander Braverman, Dennis Gaitsgory, Poincaré–Birkhoff–Witt Theorem for Quadratic Algebras of Koszul Type Journal of Algebra. ,vol. 181, pp. 315- 328 ,(1996) , 10.1006/JABR.1996.0122
M. Kapranov, Rozansky–Witten invariants via Atiyah classes Compositio Mathematica. ,vol. 115, pp. 71- 113 ,(1999) , 10.1023/A:1000664527238
Dima Arinkin, Andrei Căldăraru, When is the self-intersection of a subvariety a fibration? Advances in Mathematics. ,vol. 231, pp. 815- 842 ,(2012) , 10.1016/J.AIM.2012.05.014
Justin Roberts, Simon Willerton, On the Rozansky-Witten weight systems arXiv: Differential Geometry. ,(2006) , 10.2140/AGT.2010.10.1455