A new locally optimum watermark detection using vector-based hidden Markov model in wavelet domain

作者: Marzieh Amini , M. Omair Ahmad , M.N.S. Swamy

DOI: 10.1016/J.SIGPRO.2017.01.019

关键词: MathematicsPattern recognitionDigital watermarkingStationary wavelet transformWavelet packet decompositionWaveletWatermarkWavelet transformDetectorHidden Markov modelArtificial intelligence

摘要: The vector-based HMM is used to model the wavelet coefficients of images.A new watermark detector using proposed.Closed-form expression for test statistic derived and experimentally validated.The proposed outperforms other existing detectors.The highly robust against various kinds attacks. Watermark detection a way verifying existence in watermarking scheme copyright protection digital data. Statistical modeling subband has been extensively detection. effectiveness depends directly on how are modeled. It known that hidden Markov (HMM) very powerful statistical describing distribution coefficients, since it capable capturing marginal as well inter-scale cross orientation dependencies coefficients. In this paper, shown gives better fit empirical data comparison with Cauchy, Bessel-K form (BKF) generalized Gaussian (GG) distributions. view this, we propose locally-optimum blind domain. Bayesian framework, closed-form expressions mean variance derived, validated evaluating performance detector. Using number images, evaluated. provides rate higher than provided by detectors designed based Gaussian, BKF or GG distributions also be

参考文章(45)
H. Sadreazami, M. Omair Ahmad, M. N. S. Swamy, Optimum multiplicative watermark detector in contourlet domain using the normal inverse Gaussian distribution international symposium on circuits and systems. pp. 1050- 1053 ,(2015) , 10.1109/ISCAS.2015.7168817
J.J. Eggers, B. Girod, Blind watermarking applied to image authentication international conference on acoustics, speech, and signal processing. ,vol. 3, pp. 1977- 1980 ,(2001) , 10.1109/ICASSP.2001.941335
Joachim J. Eggers, Bernd Girod, Watermark Detection after Quantization Attacks Information Hiding. pp. 172- 186 ,(2000) , 10.1007/10719724_13
Yong Bian, Steve Liang, Image watermark detection in the wavelet domain using Bessel K densities Iet Image Processing. ,vol. 7, pp. 281- 289 ,(2013) , 10.1049/IET-IPR.2012.0345
P. Campisi, E. Maiorana, A. Neri, G. Scarano, Video texture modelling and synthesis using fractal processes Iet Image Processing. ,vol. 2, pp. 1- 17 ,(2008) , 10.1049/IET-IPR:20065010
Mona A. Sheikh, Richard G. Baraniuk, Blind Error-Free Detection of Transform-Domainwatermarks international conference on image processing. ,vol. 5, pp. 453- 456 ,(2007) , 10.1109/ICIP.2007.4379863
Yong Bian, S. Liang, Locally Optimal Detection of Image Watermarks in the Wavelet Domain Using Bessel K Form Distribution IEEE Transactions on Image Processing. ,vol. 22, pp. 2372- 2384 ,(2013) , 10.1109/TIP.2013.2246177
Marzieh Amini, M. Omair Ahmad, M. N. S. Swamy, A new blind wavelet domain watermark detector using hidden Markov model international symposium on circuits and systems. pp. 2285- 2288 ,(2014) , 10.1109/ISCAS.2014.6865627