作者: Yuichiro Tada , Shuichiro Yokoyama , Yusuke Mikura
DOI:
关键词: Minimal realization 、 Scalar (mathematics) 、 Symmetry (geometry) 、 Affine connection 、 Conformal symmetry 、 Affine geometry 、 Conformal map 、 Physics 、 Invariant (mathematics) 、 Mathematical physics
摘要: We motivate a minimal realization of slow-roll $k$-inflation by incorporating the local conformal symmetry and broken global $\mathrm{SO}(1,1)$ in metric-affine geometry. With use geometry where both metric affine connection are treated as independent variables, can be preserved each term Lagrangian thus higher derivatives scalar fields easily added conformally invariant way. Predictions this $k$-inflation, $n_\mathrm{s}\sim 0.96$, $r\sim 0.005$, $c_\mathrm{s}\sim 0.03$, not only consistent with current observational data but also have prospect to tested forthcoming observations.