Average distances in compact connected spaces

作者: David Yost

DOI: 10.1017/S0004972700005827

关键词: Euclidean geometryTopologyMathematicsTopological spaceCombinatoricsDimension (graph theory)Euclidean spaceMetric spaceSimple (abstract algebra)Convex set

摘要: We give a simple proof of the fact that compact, connected topological spaces have “average distance property”. For metric space (X, d), this asserts existence unique number = a(X) such that, given finitely many points x1, …, xn ∈ X, then there is some y X withWe examine possible values , for subsets finite dimensional normed spaces. example, if diam(X) denotes diameter convex set in euclidean space, ≤ diam(X)/√2 . On other hand, a(X)/diam(X) can be arbitrarily close to 1 non-convex sets sufficiently large dimension.

参考文章(5)
Robert J. Aumann, Lloyd S. Shapley, Albert W. Tucker, Melvin Dresher, Advances in game theory ,(1964)
Wolfgang Stadje, A property of compact connected spaces Archiv der Mathematik. ,vol. 36, pp. 275- 280 ,(1981) , 10.1007/BF01223701
Hukukane Nikaidô, On von Neumann’s minimax theorem Pacific Journal of Mathematics. ,vol. 4, pp. 65- 72 ,(1954) , 10.2140/PJM.1954.4.65
John Strantzen, An average distance result in Euclidean n -space Bulletin of The Australian Mathematical Society. ,vol. 26, pp. 321- 330 ,(1982) , 10.1017/S0004972700005815