作者: David Yost
DOI: 10.1017/S0004972700005827
关键词: Euclidean geometry 、 Topology 、 Mathematics 、 Topological space 、 Combinatorics 、 Dimension (graph theory) 、 Euclidean space 、 Metric space 、 Simple (abstract algebra) 、 Convex set
摘要: We give a simple proof of the fact that compact, connected topological spaces have “average distance property”. For metric space (X, d), this asserts existence unique number = a(X) such that, given finitely many points x1, …, xn ∈ X, then there is some y X withWe examine possible values , for subsets finite dimensional normed spaces. example, if diam(X) denotes diameter convex set in euclidean space, ≤ diam(X)/√2 . On other hand, a(X)/diam(X) can be arbitrarily close to 1 non-convex sets sufficiently large dimension.