Tree-mycorrhiza symbiosis accelerate mineral weathering: Evidences from nanometer-scale elemental fluxes at the hypha–mineral interface

作者: Steeve Bonneville , Daniel J Morgan , Achim Schmalenberger , Andrew Bray , Andrew Brown

DOI: 10.1016/J.GCA.2011.08.041

关键词: ChemistryMycorrhizaSoil waterOrganic matterMineralogyBiotiteWeatheringPaxillus involutusMineral alterationHyphaEnvironmental chemistry

摘要: Abstract In soils, mycorrhiza (microscopic fungal hypha) living in symbiosis with plant roots are the biological interface by which plants obtain, from rocks and organic matter, nutrients necessary for their growth maintenance. Despite central role mechanism kinetics of mineral alteration poorly constrained quantitatively. Here, we report situ quantification weathering rates a substrate, (0 0 1) basal plane biotite, surface-bound hypha Paxillus involutus, grown association root system Scots pine, Pinus sylvestris. Four thin-sections were extracted focused ion beam (FIB) milling along single over biotite surface. Depth-profile Si, O, K, Mg, Fe Al concentrations performed at hypha–biotite scanning transmission electron microscopy-energy dispersive X-ray spectroscopy (STEM-EDX). Large removals K (50–65%), Mg (55–75%), (80–85%) (75–85%) observed topmost 40 nm underneath while Si O preserved throughout depth-profile. A quantitative model hypha-scale was developed based on solid-state diffusion fluxes elements into break-down/mineralogical re-arrangement biotite. strong acidification also bound to surface reaching pH

参考文章(84)
W. J. Schreurs, F. M. Harold, Transcellular proton current in Achlya bisexualis hyphae: relationship to polarized growth. Proceedings of the National Academy of Sciences of the United States of America. ,vol. 85, pp. 1534- 1538 ,(1988) , 10.1073/PNAS.85.5.1534
J. R. Leake, A. L. Duran, K. E. Hardy, I. Johnson, D. J. Beerling, S. A. Banwart, M. M. Smits, Biological weathering in soil: the role of symbiotic root-associated fungi biosensing minerals and directing photosynthate-energy into grain-scale mineral weathering Mineralogical Magazine. ,vol. 72, pp. 85- 89 ,(2008) , 10.1180/MINMAG.2008.072.1.85
John Whitfield, Fungal roles in soil ecology: underground networking. Nature. ,vol. 449, pp. 136- 138 ,(2007) , 10.1038/449136A
V Slankis, Soil Factors Influencing Formation of Mycorrhizae Annual Review of Phytopathology. ,vol. 12, pp. 437- 457 ,(1974) , 10.1146/ANNUREV.PY.12.090174.002253
Maria Malmström, Steven Banwart, Biotite dissolution at 25°C: The pH dependence of dissolution rate and stoichiometry Geochimica et Cosmochimica Acta. ,vol. 61, pp. 2779- 2799 ,(1997) , 10.1016/S0016-7037(97)00093-8
Martin Kennedy, Mary Droser, Lawrence M Mayer, David Pevear, David Mrofka, Late Precambrian Oxygenation; Inception of the Clay Mineral Factory Science. ,vol. 311, pp. 1446- 1449 ,(2006) , 10.1126/SCIENCE.1118929
Mark M. Smits, Anke M. Herrmann, Michael Duane, Owen W. Duckworth, Steeve Bonneville, Liane G. Benning, Ulla Lundström, The fungal-mineral interface: challenges and considerations of micro-analytical developments. Fungal Biology Reviews. ,vol. 23, pp. 122- 131 ,(2009) , 10.1016/J.FBR.2009.11.001
Birgitta E. Kalinowski, Peter Schweda, Kinetics of muscovite, phlogopite, and biotite dissolution and alteration at pH 1-4, room temperature Geochimica et Cosmochimica Acta. ,vol. 60, pp. 367- 385 ,(1996) , 10.1016/0016-7037(95)00411-4