Power-law Fokker-Planck equation of unimolecular reaction based on the approximation to master equation

作者: Yanjun Zhou , Cangtao Yin

DOI: 10.1016/J.PHYSA.2016.07.060

关键词: Power lawPareto distributionMathematical analysisPhysicsTsallis distributionTaylor seriesMaster equationSystem size expansionChemical kineticsFokker–Planck equationStatistical physics

摘要: Abstract The Fokker–Planck equation (FPE) of the unimolecular reaction with Tsallis distribution is established by means approximation to master equation. memory effect, taken into transition probability, relevant and important for lots anomalous phenomena. Taylor expansion large volume applied derive power-law FPE. steady-state solution FPE microscopic dynamics Ito–Langevin concentration variables are therefore obtained discussed. Two reactions as examples distributions different parameters analyzed, which may imply strong effect hopping process.

参考文章(29)
Robert Zwanzig, Nonequilibrium statistical mechanics Oxford University Press. ,(2001)
Lech Gmachowski, Fractal model of anomalous diffusion European Biophysics Journal. ,vol. 44, pp. 613- 621 ,(2015) , 10.1007/S00249-015-1054-5
Niels Engholm Henriksen, Flemming Yssing Hansen, Theories of molecular reaction dynamics : the microscopic foundation of chemical kinetics Oxford University Press. ,(2008)
Kai Zhao, Mirco Musolesi, Pan Hui, Weixiong Rao, Sasu Tarkoma, Explaining the power-law distribution of human mobility through transportation modality decomposition Scientific Reports. ,vol. 5, pp. 9136- 9136 ,(2015) , 10.1038/SREP09136
Herbert Spohn, Surface dynamics below the roughening transition Journal De Physique I. ,vol. 3, pp. 69- 81 ,(1993) , 10.1051/JP1:1993117
R. A. Treumann, C. H. Jaroschek, Gibbsian theory of power-law distributions. Physical Review Letters. ,vol. 100, pp. 155005- ,(2008) , 10.1103/PHYSREVLETT.100.155005
Veit Schwämmle, Fernando D. Nobre, Evaldo M. F. Curado, Consequences of the H theorem from nonlinear Fokker-Planck equations. Physical Review E. ,vol. 76, pp. 041123- ,(2007) , 10.1103/PHYSREVE.76.041123