Learning author-topic models from text corpora

作者: Michal Rosen-Zvi , Chaitanya Chemudugunta , Thomas Griffiths , Padhraic Smyth , Mark Steyvers

DOI: 10.1145/1658377.1658381

关键词: Gibbs samplingInformation retrievalComputer sciencePerplexityDocument retrievalUnsupervised learningTopic modelProbability distributionText corpusRanking (information retrieval)

摘要: … In this section we introduce the author-topic model. The author topic model belongs to a family of generative models for text where words are viewed as discrete random variables, a …

参考文章(55)
Shah Mehul, Bart Selman, Henry Kautz, Combining social networks and collaborative ?ltering Communications of The ACM. ,(1997)
Mike Gatford, Micheline Hancock-Beaulieu, Susan Jones, Stephen E. Robertson, Steve Walker, Okapi at TREC text retrieval conference. pp. 109- 123 ,(1994)
Michal Rosen-Zvi, Yair Weiss, Amit Gruber, Hidden Topic Markov Models international conference on artificial intelligence and statistics. pp. 163- 170 ,(2007)
Andrés Corrada-Emmanuel, Andrew McCallum, Xuerui Wang, Topic and role discovery in social networks international joint conference on artificial intelligence. pp. 786- 791 ,(2005)
Joachim Diederich, Jörg Kindermann, Edda Leopold, Gerhard Paass, Authorship Attribution with Support Vector Machines Applied Intelligence. ,vol. 19, pp. 109- 123 ,(2003) , 10.1023/A:1023824908771
Krista Lagus, Timo Honkela, Samuel Kaski, Teuvo Kohonen, Websom for Textual Data Mining Artificial Intelligence Review. ,vol. 13, pp. 345- 364 ,(1999) , 10.1023/A:1006586221250
Inderjit S. Dhillon, Dharmendra S. Modha, Concept Decompositions for Large Sparse Text Data Using Clustering Machine Learning. ,vol. 42, pp. 143- 175 ,(2001) , 10.1023/A:1007612920971
David M Blei, Andrew Y Ng, Michael I Jordan, None, Latent dirichlet allocation Journal of Machine Learning Research. ,vol. 3, pp. 993- 1022 ,(2003) , 10.5555/944919.944937
Daniel D. Lee, H. Sebastian Seung, Learning the parts of objects by non-negative matrix factorization Nature. ,vol. 401, pp. 788- 791 ,(1999) , 10.1038/44565