Gaussian time-dependent variational principle for the Bose-Hubbard model

作者: Tommaso Guaita , Lucas Hackl , Tao Shi , Claudius Hubig , Eugene Demler

DOI: 10.1103/PHYSREVB.100.094529

关键词: Random phase approximationBose–Hubbard modelEigenvalues and eigenvectorsVariational principleEquations of motionGaussianDensity matrix renormalization groupMathematical physicsImaginary time

摘要: We systematically extend Bogoliubov theory beyond the mean-field approximation of Bose-Hubbard model in superfluid phase. Our approach is based on time-dependent variational principle applied to family all Gaussian states (i.e., TDVP). First, we find best ground-state within our class using imaginary time evolution 1D, 2D, and 3D. benchmark results by comparing DMRG 1D. Second, compute approximate one- two-particle excitation spectrum as eigenvalues linearized projected equations motion (linearized gapless Goldstone mode, a continuum excitations doublon mode. discuss relation gap between mode energy Higgs Third, linear response functions for perturbations describing density variation lattice modulation their relations experiment. methods can be any that are or quadratic creation/annihilation operators. Finally, provide comprehensive overview how related well-known methods, such traditional random phase approximation.

参考文章(24)
C. Kollath, A. Iucci, T. Giamarchi, W. Hofstetter, U. Schollwöck, Spectroscopy of ultracold atoms by periodic lattice modulations. Physical Review Letters. ,vol. 97, pp. 050402- ,(2006) , 10.1103/PHYSREVLETT.97.050402
Christian Weedbrook, Stefano Pirandola, Raúl García-Patrón, Nicolas J. Cerf, Timothy C. Ralph, Jeffrey H. Shapiro, Seth Lloyd, Gaussian quantum information Reviews of Modern Physics. ,vol. 84, pp. 621- 669 ,(2012) , 10.1103/REVMODPHYS.84.621
Jutho Haegeman, J. Ignacio Cirac, Tobias J. Osborne, Iztok Pižorn, Henri Verschelde, Frank Verstraete, Time-dependent variational principle for quantum lattices. Physical Review Letters. ,vol. 107, pp. 070601- 070601 ,(2011) , 10.1103/PHYSREVLETT.107.070601
Immanuel Bloch, Jean Dalibard, Wilhelm Zwerger, Many-Body Physics with Ultracold Gases Reviews of Modern Physics. ,vol. 80, pp. 885- 964 ,(2008) , 10.1103/REVMODPHYS.80.885
M. Bijlsma, H. T. C. Stoof, Variational approach to the dilute Bose gas Physical Review A. ,vol. 55, pp. 498- 512 ,(1997) , 10.1103/PHYSREVA.55.498
Michael Knap, Enrico Arrigoni, Wolfgang von der Linden, Variational cluster approach for strongly correlated lattice bosons in the superfluid phase Physical Review B. ,vol. 83, pp. 134507- ,(2011) , 10.1103/PHYSREVB.83.134507
D. Pekker, B. Wunsch, T. Kitagawa, E. Manousakis, A. S. Sørensen, E. Demler, Signatures of the superfluid to Mott insulator transition in equilibrium and in dynamical ramps Physical Review B. ,vol. 86, pp. 144527- ,(2012) , 10.1103/PHYSREVB.86.144527
E. P. Gross, STRUCTURE OF A QUANTIZED VORTEX IN BOSON SYSTEMS Il Nuovo Cimento. ,vol. 20, pp. 454- 477 ,(1961) , 10.1007/BF02731494
C. Menotti, N. Trivedi, Spectral weight redistribution in strongly correlated bosons in optical lattices Physical Review B. ,vol. 77, pp. 235120- ,(2008) , 10.1103/PHYSREVB.77.235120
Steven R. White, Density matrix formulation for quantum renormalization groups Physical Review Letters. ,vol. 69, pp. 2863- 2866 ,(1992) , 10.1103/PHYSREVLETT.69.2863