作者: R. Clarkson , R. B. Mann
DOI: 10.1103/PHYSREVLETT.96.051104
关键词: Mathematical physics 、 Einstein equations 、 Einstein 、 Quantum mechanics 、 Class (set theory) 、 Cosmological constant 、 Soliton 、 Energy (signal processing) 、 Physics 、 General Physics and Astronomy
摘要: We present a new class of solutions in odd dimensions to Einstein's equations containing either positive or negative cosmological constant. These resemble the even-dimensional Eguchi-Hanson\char21{}(anti)-de Sitter [(A)dS] metrics, with added feature having Lorentzian signatures. They provide an affirmative answer open question as whether not there exist constant that asymptotically approach ${\mathrm{AdS}}_{5}/\ensuremath{\Gamma}$ but have less energy than ${\mathrm{AdS}}_{5}/\ensuremath{\Gamma}$. evidence these are lowest-energy states within their asymptotic class.