Lagrangian formalism for nonlinear second-order Riccati systems: One-dimensional integrability and two-dimensional superintegrability

作者: José F. Cariñena , Mariano Santander , Manuel F. Rañada

DOI: 10.1063/1.1920287

关键词: Riccati equationAlgebraic Riccati equationOrdinary differential equationLagrangianLissajous curveMathematicsNonlinear systemFormalism (philosophy of mathematics)Nonlinear oscillatorsMathematical analysis

摘要: The existence of a Lagrangian description for the second-order Riccati equation is analyzed and results are applied to study two different nonlinear systems both related with generalized equation. Lagrangians non-natural forces not derivable from potential. constant value E preserved energy function can be used as an appropriate parameter characterizing behavior solutions these systems. In second part two-dimensional versions endowed superintegrability proved. explicit expressions additional integrals obtained in cases. Finally it proved that orbits system, represents oscillator, considered Lissajous figures

参考文章(42)
Manuel F. Rañada, Dynamical symmetries, bi-Hamiltonian structures, and superintegrable n=2 systems Journal of Mathematical Physics. ,vol. 41, pp. 2121- 2134 ,(2000) , 10.1063/1.533230
V.K Chandrasekar, M Senthilvelan, M Lakshmanan, On the complete integrability and linearization of certain second-order nonlinear ordinary differential equations Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences. ,vol. 461, pp. 2451- 2477 ,(2005) , 10.1098/RSPA.2005.1465
V K Chandrasekar, M Senthilvelan, M Lakshmanan, Extended Prelle-Singer Method and Integrability/Solvability of a Class of Nonlinear nth Order Ordinary Differential Equations Journal of Nonlinear Mathematical Physics. ,vol. 12, pp. 184- 201 ,(2005) , 10.2991/JNMP.2005.12.S1.16
P. M. Mathews, M. Lakshmanan, On a unique nonlinear oscillator Quarterly of Applied Mathematics. ,vol. 32, pp. 215- 218 ,(1974) , 10.1090/QAM/430422
Edward Lindsay Ince, Ordinary differential equations ,(1927)
Pavel Winternitz, Simon Gravel, Superintegrability with third order invariants in quantum and classical mechanics arXiv: Mathematical Physics. ,(2002) , 10.1063/1.1514385
Pantelis A. Damianou, MULTIPLE HAMILTONIAN STRUCTURE OF BOGOYAVLENSKY–TODA LATTICES Reviews in Mathematical Physics. ,vol. 16, pp. 175- 241 ,(2004) , 10.1142/S0129055X04001972
M Senthilvelan, M Lakshmanan, V K Chandrasekar, Extended Prelle-Singer Method and Integrability/Solvability of a Class of Nonlinear $n$th Order Ordinary Differential Equations arXiv: Exactly Solvable and Integrable Systems. ,(2005) , 10.2991/JNMP.2005.12.S1.16
E. G. Kalnins, J. M. Kress, P. Winternitz, Superintegrability in a two-dimensional space of non-constant curvature arXiv: Mathematical Physics. ,(2001) , 10.1063/1.1429322