Polynomial hulls and an optimization problem

作者: Marshall A. Whittlesey

DOI: 10.1007/BF02922104

关键词: Infimum and supremumCombinatoricsDiscrete mathematicsVector-valued functionBounded functionPositive-definite matrixBall (mathematics)Open setHyperplaneMathematicsTangent space

摘要: We say that a subset of Cn is hypoconvex if its complement the union complex hyperplanes. it strictly smoothly bounded and at every point boundary real Hessian defining function positive definite on tangent space point. Let Bn be open unit ball in Cn.Suppose K C∞ compact manifold ∂B1 × Cn, n > 1, diffeomorphic to ∂Bn, each whose fibers Kz over bounds connected set. polynomialhull K. Then we show K∖K graphs analytic vector valued functions B1. This result shows an unnatural assumption regarding deformability earlier version this unnecessary. Next, study H∞ optimization problem. If pis real-valued ∂B1× infimum γρ = infƒ∈H ∞ (B1)n ‖ρ(z, ƒ (z))‖∞ attained by unique provided set (z, w) ∈ C n¦ρ(z, ≤ has circle.

参考文章(18)
Laszlo Lempert, La métrique de Kobayashi et la représentation des domaines sur la boule Bulletin de la Société mathématique de France. ,vol. 79, pp. 427- 474 ,(1981) , 10.24033/BSMF.1948
D. E. Marshall, J. W. Helton, Frequency domain design and analytic selections Indiana University Mathematics Journal. ,vol. 39, pp. 157- 184 ,(1990)
Lars Hormander, Notions of Convexity ,(1994)
L. Lempert, Holomorphic retracts and intrinsic metrics in convex domains Analysis Mathematica. ,vol. 8, pp. 257- 261 ,(1982) , 10.1007/BF02201775
L�szl� Lempert, Symmetries and other transformations of the complex Monge-Ampère equation Duke Mathematical Journal. ,vol. 52, pp. 869- 885 ,(1985) , 10.1215/S0012-7094-85-05245-7
Marshall A. Whittlesey, Polynomial hulls and $H^\infty$ control for a hypoconvex constraint Mathematische Annalen. ,vol. 317, pp. 677- 701 ,(2000) , 10.1007/PL00004419
Franc Forstnerič, Polynomially convex hulls with piecewise smooth boundaries Mathematische Annalen. ,vol. 276, pp. 97- 104 ,(1986) , 10.1007/BF01450928
E M Chirka, REGULARITY OF THE BOUNDARIES OF ANALYTIC SETS Mathematics of The Ussr-sbornik. ,vol. 45, pp. 291- 335 ,(1983) , 10.1070/SM1983V045N03ABEH001010
Miran Černe, Smooth families of fibrations and analytic selections of polynomial hulls Bulletin of The Australian Mathematical Society. ,vol. 52, pp. 97- 105 ,(1995) , 10.1017/S0004972700014489
Herbert Alexander, John Wermer, Polynomial hulls with convex fibers Mathematische Annalen. ,vol. 271, pp. 99- 109 ,(1985) , 10.1007/BF01455798