作者: N Grosjean , J M Maillet , G Niccoli
DOI: 10.1088/1742-5468/2012/10/P10006
关键词: Sine 、 Matrix (mathematics) 、 Algebra 、 Eigenvalues and eigenvectors 、 Scalar (mathematics) 、 Separation of variables 、 Quantum 、 Integrable system 、 Mathematics 、 Lattice (order) 、 Pure mathematics
摘要: We develop a method for computing form factors of local operators in the framework Sklyanin's separation variables (SOV) approach to quantum integrable systems. For that purpose, we consider sine-Gordon model on finite lattice and dimensional cyclic representations as our main example. first build two central tools matrix elements operators, namely, generic determinant formula scalar products states SOV reconstruction fields terms separate variables. The general are then obtained sums determinants matrices, their being given weighted running over involving Baxter Q-operator eigenvalues.