Practical variable selection for generalized additive models

作者: Giampiero Marra , Simon N. Wood

DOI: 10.1016/J.CSDA.2011.02.004

关键词: EstimatorLasso (statistics)Nonparametric statisticsNonparametric regressionLinear modelFeature selectionSelection (genetic algorithm)Mathematical optimizationCovariateMathematics

摘要: The problem of variable selection within the class of generalized additive models, when there are many covariates to choose from but the number of predictors is still somewhat smaller …

参考文章(47)
Peter McCullagh, John Ashworth Nelder, Generalized Linear Models ,(1983)
Ming Yuan, Nonnegative Garrote Component Selection in Functional ANOVA models international conference on artificial intelligence and statistics. pp. 660- 666 ,(2007)
Gerhard Tutz, Harald Binder, Boosting ridge regression Computational Statistics & Data Analysis. ,vol. 51, pp. 6044- 6059 ,(2007) , 10.1016/J.CSDA.2006.11.041
George S. Kimeldorf, Grace Wahba, A Correspondence Between Bayesian Estimation on Stochastic Processes and Smoothing by Splines Annals of Mathematical Statistics. ,vol. 41, pp. 495- 502 ,(1970) , 10.1214/AOMS/1177697089
Nivien Shafik, Gerhard Tutz, Boosting nonlinear additive autoregressive time series Computational Statistics & Data Analysis. ,vol. 53, pp. 2453- 2464 ,(2009) , 10.1016/J.CSDA.2008.12.006
Hui Zou, The adaptive lasso and its oracle properties Journal of the American Statistical Association. ,vol. 101, pp. 1418- 1429 ,(2006) , 10.1198/016214506000000735
Marta Avalos, Yves Grandvalet, Christophe Ambroise, Parsimonious additive models Computational Statistics & Data Analysis. ,vol. 51, pp. 2851- 2870 ,(2007) , 10.1016/J.CSDA.2006.10.007