Chapter 15 Structural models of tetrahedrally bonded amorphous materials

作者: F. Wooten , D. Weaire

DOI: 10.1016/S0922-3487(06)80016-X

关键词: Condensed matter physicsChemistryAmorphous solidAmorphous siliconCrystallographyStrain energySolar energy conversionSingle pairPerfect crystalMonte Carlo methodAnnealing (metallurgy)

摘要: Publisher Summary This chapter focuses on the structural models of tetrahedrally bonded amorphous materials. Amorphous silicon is a particularly interesting and important material. It most promising material for wide range applications solar energy conversion. A fundamental understanding properties these materials, whether electrical, optical, or mechanical, requires detailed knowledge their microscopic structure. With advent realistic structure, much effort has gone into calculations to elucidate properties. Starting with structure perfect crystal, bond switches are made according usual Monte Carlo prescription. The initial strain zero. When single pair introduced otherwise given by Keating potential 4.5 eV. Because crystal minimum energy, no trial will be accepted permanent basis except at finite temperature. appropriate temperature can determined systematic trial. After each bond-pair switch, relaxed geometrical configuration energy. number shells over which relax depends upon expected differences between configurations. During randomization beginning stages annealing, usually sufficiently large that calculated using local relaxation shell.

参考文章(49)
A. A. Maradudin, G. K. Horton, Dynamical properties of solids North-Holland. ,(1985)
Van Derck Frechette, Non-crystalline solids Wiley. ,(1960)
F. Wooten, D. Weaire, Modeling Tetrahedrally Bonded Random Networks by Computer Solid State Physics. ,vol. 40, pp. 1- 42 ,(1987) , 10.1016/S0081-1947(08)60689-X
P Steinhardt, R Alben, D Weaire, Relaxed continuous random network models: (I). Structural characteristics☆ Journal of Non-crystalline Solids. ,vol. 15, pp. 199- 214 ,(1974) , 10.1016/0022-3093(74)90049-0
Adrian C. Wright, Robert A. Hulme, David I. Grimley, Roger N. Sinclair, Steve W. Martin, David L. Price, Frank L. Galeener, The structure of some simple amorphous network solids revisited Journal of Non-crystalline Solids. ,vol. 129, pp. 213- 232 ,(1991) , 10.1016/0022-3093(91)90098-Q
D. R. McKenzie, D. Muller, B. A. Pailthorpe, Compressive-stress-induced formation of thin-film tetrahedral amorphous carbon Physical Review Letters. ,vol. 67, pp. 773- 776 ,(1991) , 10.1103/PHYSREVLETT.67.773
K. C. Pandey, Diffusion without vacancies or interstitials: a new concerted exchange mechanism Physical Review Letters. ,vol. 57, pp. 2287- 2290 ,(1986) , 10.1103/PHYSREVLETT.57.2287
G. Jungnickel, M. Kühn, S. Deutschmann, F. Richter, U. Stephan, P. Blaudeck, Th. Frauenheim, Structure and chemical bonding in high density amorphous carbon Diamond and Related Materials. ,vol. 3, pp. 1056- 1065 ,(1994) , 10.1016/0925-9635(94)90118-X
R. H. Wentorf, J. S. Kasper, Two New Forms of Silicon Science. ,vol. 139, pp. 338- 339 ,(1963) , 10.1126/SCIENCE.139.3552.338-A
Adrian C Wright, The comparison of molecular dynamics simulations with diffraction experiments Journal of Non-Crystalline Solids. ,vol. 159, pp. 264- 268 ,(1993) , 10.1016/0022-3093(93)90232-M