The Successive Derivatives of the Period Function of a Plane Vector Field

作者: J.-P. Françoise

DOI: 10.1006/JDEQ.1998.3437

关键词: CohomologyHamiltonian (quantum mechanics)Mathematical analysisBifurcation theoryMelnikov methodReturn mappingComputationVector fieldMathematicsPure mathematicsAnalysis

摘要: Previously, we provided an expression which generalized the classical Melnikov function to any order, for first nonzero derivative of a return mapping. Our method relied on decomposition 1-form associated relative cohomology perturbed Hamiltonian. With same techniques, give formula period function. We focus particular example ofH=(1/2)(x2+y2) and then define class Hamiltonians computation remains valid. Finally, investigate relations with Birkhoff normal form.

参考文章(14)
I. D. Iliev, Higher-order Melnikov functions for degenerate cubic Hamiltonians Advances in Differential Equations. ,vol. 1, pp. 689- 708 ,(1996)
M. Sabatini, Quadratic isochronous centers commute Applicationes Mathematicae. ,vol. 26, pp. 357- 362 ,(1999) , 10.4064/AM-26-3-357-362
G. S. Petrov, Number of zeros of complete elliptic integrals Functional Analysis and Its Applications. ,vol. 18, pp. 148- 149 ,(1984) , 10.1007/BF01077834
Massimo Villarini, Regularity properties of the period function near a center of a planar vector field Nonlinear Analysis-theory Methods & Applications. ,vol. 19, pp. 787- 803 ,(1992) , 10.1016/0362-546X(92)90222-Z
Jean-Pierre Françoise, The first derivative of the period function of a plane vector field Publicacions Matematiques. ,vol. 41, pp. 127- 134 ,(1997) , 10.5565/37886
Carmen Chicone, Marc Jacobs, Bifurcation of critical periods for plane vector fields Transactions of the American Mathematical Society. ,vol. 312, pp. 433- 486 ,(1989) , 10.1090/S0002-9947-1989-0930075-2
Marcos Sebastiani, Preuve d'une conjecture de Brieskorn Manuscripta Mathematica. ,vol. 2, pp. 301- 308 ,(1970) , 10.1007/BF01168382
J.P. Francoise, V. Guillemin, On the period spectrum of a symplectic mapping Journal of Functional Analysis. ,vol. 100, pp. 317- 358 ,(1991) , 10.1016/0022-1236(91)90114-K
J. P. Francoise, Successive derivatives of a first return map, application to the study of quadratic vector fields Ergodic Theory and Dynamical Systems. ,vol. 16, pp. 87- 96 ,(1996) , 10.1017/S0143385700008725
R. Pons, J.-P. Francoise, Une approche algorithmique du problème du centre pour des perturbations homogènes Bulletin Des Sciences Mathematiques. ,vol. 120, pp. 1- 17 ,(1996)