Resolvent estimates and scattering matrix for N-particle Hamiltonians

作者: D. Yafaev

DOI: 10.1007/BF01262994

关键词: MathematicsOperator (physics)Continuous functionResolventScattering theorySymmetric matrixScatteringMathematical analysisMatrix functionMatrix (mathematics)

摘要: New estimates for the resolvent of theN-particle Schrodinger operator are established. The obtained allow us to give stationary representations corresponding scattering matrix. In particular, it is shown that matrix a strongly continuous function spectral parameter (energy).

参考文章(32)
M. Moulin, J. Ginibre, Hilbert space approach to the quantum mechanical three-body problem Annales De L Institut Henri Poincare-physique Theorique. ,vol. 21, pp. 97- 145 ,(1974)
Volker Enss, Completeness of three body quantum scattering LNM. ,vol. 1031, pp. 62- 88 ,(1983) , 10.1007/BFB0072111
Tosio Kato, Smooth operators and commutators Studia Mathematica. ,vol. 31, pp. 535- 546 ,(1968) , 10.4064/SM-31-5-535-546
Barry Simon, Michael Reed, Methods of Modern Mathematical Physics ,(1972)
E. Mourre, Absence of singular continuous spectrum for certain self-adjoint operators Communications in Mathematical Physics. ,vol. 78, pp. 391- 408 ,(1981) , 10.1007/BF01942331
P. Deift, B. Simon, A time-dependent approach to the completeness of multiparticle quantum systems Communications on Pure and Applied Mathematics. ,vol. 30, pp. 573- 583 ,(1977) , 10.1002/CPA.3160300504
D. Yafaev, Radiation conditions and scattering theory forN-particle Hamiltonians Communications in Mathematical Physics. ,vol. 154, pp. 523- 554 ,(1993) , 10.1007/BF02102107
Tosio Kato, Wave Operators and Similarity for Some Non-selfadjoint Operators Mathematische Annalen. ,vol. 162, pp. 258- 279 ,(1966) , 10.1007/978-3-642-85997-7_16
P. Perry, I. M. Sigal, B. Simon, Spectral analysis of N-body Schrodinger operators * Annals of Mathematics. ,vol. 114, pp. 519- ,(1981) , 10.2307/1971301