作者: A. Dobnikar , J. Ficzko , D. Podbregar , U. Rezar
DOI: 10.1016/0165-6074(92)90018-3
关键词: Artificial neural network 、 Computer vision 、 Computer science 、 Fourier transform 、 Pattern recognition 、 Magnification 、 Normalization (image processing) 、 Invariant (mathematics) 、 Neural network modeling 、 Artificial intelligence 、 Image processing 、 Associative property
摘要: Abstract Invariant Pattern Classification (IPC) of black and white images is studied in two directions. Classical Fourier Transform (FT) approach consists normalisation procedure for excluding magnification or size influence FT transformation, whose output spectrum descriptors are invariant to rotation and/or translation. Only pattern classification independent concerned this paper. It supposed that the observed object placed center image. An alternative uses Neural Network Modeling (NNM) achieve same effect. shown proposed with combination dynamic associative properties better solves problem additional potential capability considerable higher parallel processing.