Parareal in time 3D numerical solver for the LWR Benchmark neutron diffusion transient model

作者: Anne-Marie Baudron , Jean-Jacques Lautard , Yvon Maday , Mohamed Kamel Riahi , Julien Salomon

DOI: 10.1016/J.JCP.2014.08.037

关键词: Finite element methodIterative methodPararealPredictor–corrector methodNuclear reactor coreApplied mathematicsSolverDiscretizationMathematical optimizationConvection–diffusion equationMathematics

摘要: In this paper we present a time-parallel algorithm for the 3D neutrons calculation of transient model in nuclear reactor core. The consists numerically solving time dependent diffusion approximation equation, which is simplified transport equation. numerical resolution done with finite elements method based on tetrahedral meshing computational domain, representing core, and discretization achieved using ?-scheme. presents moving control rods during reaction. Therefore, cross-sections (piecewise constants) are taken into account by interpolations respect to velocity rods. parallelism across an adequate use parareal handled problem. This parallel predictor corrector scheme that iteratively combines two kinds propagators, one coarse fine. Our made efficient means solver defined large step fixed position model, while fine propagator assumed be high order full model.The implementation our provides good scalability algorithm. Numerical results show efficiency light water corresponding Langenbuch-Maurer-Werner benchmark.

参考文章(33)
David Guibert, Damien Tromeur-Dervout, Adaptive Parareal for Systems of ODEs Lecture Notes in Computational Science and Engineering. pp. 587- 594 ,(2007) , 10.1007/978-3-540-34469-8_73
Martin J. Gander, Stefan Vandewalle, On the Superlinear and Linear Convergence of the Parareal Algorithm Lecture Notes in Computational Science and Engineering. pp. 291- 298 ,(2007) , 10.1007/978-3-540-34469-8_34
Marcus Sarkis, Christian E. Schaerer, Tarek Mathew, Block Diagonal Parareal Preconditioner for Parabolic Optimal Control Problems Lecture Notes in Computational Science and Engineering. pp. 409- 416 ,(2008) , 10.1007/978-3-540-75199-1_52
Martin J Gander, Analysis of the Parareal Algorithm Applied to Hyperbolic Problems Using Characteristics SeMA Journal: Boletín de la Sociedad Española de Matemática Aplicada. ,vol. 42, pp. 21- 36 ,(2008)
Daoud S. Daoud, Stability of the Parareal Time Discretization for Parabolic Inverse Problems Lecture Notes in Computational Science and Engineering. pp. 275- 282 ,(2007) , 10.1007/978-3-540-34469-8_32
Paul F. Fischer, Frédéric Hecht, Yvon Maday, A Parareal in Time Semi-implicit Approximation of the Navier-Stokes Equations Springer, Berlin, Heidelberg. pp. 433- 440 ,(2005) , 10.1007/3-540-26825-1_44
S. Langenbuch, W. Maurer, W. Werner, Coarse-mesh flux-expansion method for the analysis of space--time effects in large light water reactor cores Nuclear Science and Engineering. ,vol. 63, pp. 437- 456 ,(1977) , 10.13182/NSE77-A27061
A.-M. Baudron, J.-J. Lautard, Y. Maday, O. Mula, The Parareal in Time Algorithm Applied to the Kinetic Neutron Diffusion Equation 21st International Conference on Domain Decomposition Methods. pp. 437- 445 ,(2014) , 10.1007/978-3-319-05789-7_41