Collaborative prediction using ensembles of Maximum Margin Matrix Factorizations

作者: Dennis DeCoste

DOI: 10.1145/1143844.1143876

关键词: MovieLensMachine learningTraining timeMatrix decompositionMathematicsMargin (machine learning)Artificial intelligenceMatrix (mathematics)

摘要: … Also, we suspected that, much like other related and more well-studied maximum margin approaches (such as support vector machines), MMMF might be somewhat susceptible to …

参考文章(13)
Mark Claypool, Tim Miranda, Paul Murnikov, Dmitry Netes, Matthew Sartin, Anuja Gokhale, Combining Content-Based and Collaborative Filters in an Online Newspaper international acm sigir conference on research and development in information retrieval. ,(1999)
Nathaniel Good, John Riedl, Joseph A. Konstan, Al Borchers, J. Ben Schafer, Badrul Sarwar, Jon Herlocker, Combining collaborative filtering with personal agents for better recommendations national conference on artificial intelligence. pp. 439- 446 ,(1999)
Thomas G. Dietterich, Giorgio Valentini, Bias-Variance Analysis of Support Vector Machines for the Development of SVM-Based Ensemble Methods Journal of Machine Learning Research. ,vol. 5, pp. 725- 775 ,(2004) , 10.5555/1005332.1016783
Ralf Herbrich, Jyrki Kivinen, John Platt, Robert C. Williamson, Edward Harrington, Online Bayes point machines knowledge discovery and data mining. pp. 241- 252 ,(2003) , 10.5555/1760894.1760927
Michael J. Pazzani, Daniel Billsus, Learning Collaborative Information Filters international conference on machine learning. pp. 46- 54 ,(1998)
Daniel D. Lee, H. Sebastian Seung, Learning the parts of objects by non-negative matrix factorization Nature. ,vol. 401, pp. 788- 791 ,(1999) , 10.1038/44565
Jasson D. M. Rennie, Nathan Srebro, Fast maximum margin matrix factorization for collaborative prediction Proceedings of the 22nd international conference on Machine learning - ICML '05. pp. 713- 719 ,(2005) , 10.1145/1102351.1102441
Thomas Hofmann, Latent semantic models for collaborative filtering ACM Transactions on Information Systems. ,vol. 22, pp. 89- 115 ,(2004) , 10.1145/963770.963774
Benjamin Marlin, Richard S. Zemel, The multiple multiplicative factor model for collaborative filtering Twenty-first international conference on Machine learning - ICML '04. pp. 73- ,(2004) , 10.1145/1015330.1015437
Ramadass Nagarajan, Prem Melville, Raymod J. Mooney, Content-boosted collaborative filtering for improved recommendations national conference on artificial intelligence. pp. 187- 192 ,(2002) , 10.5555/777092.777124